Меню Рубрики

Быстрое утомление нервных центров

Длительное повторное раздражение рецептивного поля рефлекса приводит к ослаблению рефлекторной реакции вплоть до полного исчезновения, что называется утомле­нием. Этот процесс связан с деятельностью синапсов — в последних наступает истощение запасов медиатора, уменьшаются энергетиче­ские ресурсы, происходит адаптация постсинаптического рецептора к медиатору.

Тонус нервного центра

(фоновой активность)

Тонус, или наличие определенной фоновой активности нервного центра, определяется тем, что в покое в отсутствие спе­циальных внешних раздражении определенное количество нервных клеток находится в состоянии постоянного возбуждения, генерирует фоновые импульсные потоки.

Даже во сне в высших отделах мозга остается некоторое количество фоновоактивных нервных клеток, формирующих «сторожевые пункты» и определяющих некоторый тонус соответствующего нервного центра.

Пластичность

Функциональная возможность нервного центра существенно модифицировать картину осуществляемых рефлектор­ных реакций. Поэтому пластичность нервных центров тесно связана с изменением эффективности или направленности связей между нейронами.

Для врача особенно важно знание этого свойства (принци­па): при повреждении отдельных центров мозга их функция может перейти к другим структурам мозга (конечно, если повреждение центра не связано с наступлением смерти, что, например, бывает при нарушении дыхательного центра). За­мещение утраченной функции — важнейшее приобретение ЦНС (известно, что нейроны ЦНС, как правило, не восстанав­ливаются) — позволяет восстанавливать утраченные свойства. Показано, что процесс возмещения утраченных функций осу­ществляется при обязательном участии коры больших полу­шарий. Показано, что у животных, которым после восстанов­ления утраченных функций удаляли кору, вновь имела место утрата этой функции.

Рис. Частичная денервация > сенсибилизация

3. Принцип субординации или соподчинения. В ЦНС имеют место иерархические взаимоотношения — начальник (кора) и подчиненные (сверху вниз — базальные ганглии, средний мозг, продолговатый, спинной) и соподчи­нение — нижележащий отдел подчиняется указаниям вышеле­жащего отдела.

4. Принцип обратной связи и копий эфферентаций. Это один из важнейших принципов координации: невозможно точно координировать, управлять, если отсутствует обратная связь, т.е. данные о результатах управления. Осуществляется эта связь за счет потока импульсов с рецепторов.

Этот прин­цип широко обсуждается в физиологии ЦНС, о нем уже гово­рил И.М.Сеченов, много внимания ему уделил П.К.Анохин.

Копия эфферентаций. Для управления важно иметь ин­формацию о том, какие команды посылаются на периферию. Известно, что в системах, управляющих скелетными мышца­ми, каждый отдел, посылая сигнал управления к работающей мышце, одновременно сообщает об этом вышележащему отде­лу. Это вариант обратной связи.

ИНТЕГРАЦИЯ В НЕРВНЫХ ЦЕНТРАХ

Важные интегративные фун­кции клеток нервных центров ассоциируются с интегративными процессами на системном уровне в плане образования функцио­нальных объединений отдельных нервных центров в целях осу­ществления сложных координированных приспособительных цело­стных реакций организма (сложные адаптивные поведенческие акты).

Феномен посттетанической потенциации проявляется следу­ющим образом. Раздражая стимулами редкой частоты афферентный нерв, можно получить некоторый рефлекс определенной, интенсив­ности. Если затем этот нерв в течение некоторого времени подвергать высокочастотному ритмическому раздражению (300—400 стимулов в секунду), то повторное редкое ритмическое раздражение приведет к резкому усилению реакции (рис. 4.4),

Рис. 4.4. Феномен посттетанической потенциации.

1 — тестовый ответ; 2 — тетаническая стимуляция; 3 — потенцированный ответ нервной клетки.

источник

Нервным центром называется совокупность нейронов в различных отделах ЦНС, обеспечивающих регуляцию какой-либо функции организма. Например, бульбарный дыхательный центр.

Для проведения возбуждения через нервные центры характерны следующие особенности:

1. Одностороннее проведение. Оно идет от афферентного, через вставочный, к эфферентному нейрону. Это обусловлено наличием межнейронных синапсов.

2. Центральная задержка проведение возбуждения, т.е. по ЦНС возбуждение идет значительно медленнее, чем по нервному волокну. Это объясняется синаптической задержкой. Так как больше всего синапсов в центральном звене рефлекторной дуги, там скорость проведения наименьшая. Исходя из этого время рефлекса – это время от начала воздействия раздражителя до появления ответной реакции. Чем длительнее центральная задержка, тем больше время рефлекса. Вместе с тем оно зависит от силы раздражителя. Чем оно больше, тем время рефлекса короче и наоборот. Это объясняется явлением суммации возбуждений в синапсах. Кроме того, оно определяется и функциональным состоянием ЦНС. Например, при утомлении нервного центра длительность рефлекторной реакции увеличивается.

3. Пространственная и временная суммация. Временная суммация возникает как в синапсах вследствие того, что чем больше поступает нервных импульсов, тем больше выделяется нейромедиатора в них, тем выше амплитуда возбуждающего постсинаптического потенциала. Поэтому рефлекторная реакция может возникать на несколько последовательных подпороговых раздражений. Пространственная суммация наблюдается тогда, когда к нервному центру идут импульсы от нескольких рецепторных нейронов. При действии на них подпороговых стимулов, возникающие постсинаптические потенциалы суммируются, и в мембране нейрона генерируется распространяющийся потенциал действия.

4. Трансформация ритма возбуждения – изменение частоты нервных импульсов при прохождении через нервный центр. Частота может снижаться или повышаться. Например, повышающая трансформация – увеличение частоты обусловлено дисперсией и мультипликацией возбуждения в нейронах. Первое явление возникает в результате разделения нервных импульсов на несколько нейронов, аксоны которых образуют затем синапсы на одном нейроне. Второе – генерацией нескольких нервных импульсов при развитии возбуждающего постсинаптического потенциала на мембране одного нейрона. Понижающая трансформация объясняется суммацией нескольких возбуждающих постсинаптических потенциалов и возникновением одного потенциала действия в нейроне.

5. Посттетаническая потенциация – это усиление рефлекторной реакции в результате двигательного возбуждения нейронов центра. Под влиянием многих серий нервных импульсов, проходящих с большой частотой через синапсы, выделяется большое количество нейромедиаторов в межнейронных синапсах. Это приводит к прогрессирующему нарастанию амплитуды возбуждающего постсинаптического потенциала и длительному (несколько часов) возбуждению нейронов.

6. Последействие – это запаздывание окончания рефлекторного ответа после прекращения действия раздражителя. Связано с циркуляцией нервных импульсов по замкнутым цепям нейронов.

7. Тонус нервных центров – состояние постоянной повышенной активности. Он обусловлен постоянным поступлением к нервному центру нервных импульсов от периферических рецепторов, возбуждающим влиянием на нейроны продуктов метаболизма и других гуморальных факторов. Например, проявлением тонуса соответствующих центров является тонус определенной группы мышц.

8. Автоматия (спонтанная активность) нервных центров. Периодическая или постоянная генерация нейронами нервных импульсов, которые возникают в них самопроизвольно, т.е. в отсутствии сигналов от других нейронов или рецепторов. Обусловлена колебаниями процессов метаболизма в нейронах и действием на них гуморальных факторов.

9. Пластичность нервных центров. Это их способность изменять функциональные свойства. При этом центр приобретает возможность выполнять новые функции или восстанавливать старые после повреждения. В основе пластичности нервного центра лежит пластичность синапсов и мембран нейронов, которые могут изменять свою молекулярную структуру.

10. Низкая физиологическая лабильность и быстрая утомляемость. Нервные центры могут проводить импульсы лишь ограниченной частоты. Их утомление объясняется утомлением синапсов и ухудшением метаболизма нейронов, истощение состава медиаторов, длительность их синтеза.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома — страшная бессонница, которая потом кажется страшным сном. 8575 — | 7059 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

В отличие от нервных волокон нервные центры легкоутомляемы. Утомление нервного центра проявляется в постепенном снижении и в конечном итоге полном прекращении рефлекторного ответа при продолжительном раздражении афферентных нервных волокон.

Утомление нервных центров связано прежде всего с нарушением передачи возбуждения в межнейронных синапсах. Такое нарушение может быть обусловлено резким уменьшением запасов синтезированного медиатора в нервных окончаниях, уменьшением чувствительности к медиатору постсинаптической мембраны нервной клетки, уменьшением ее энергетических ресурсов.

Не все рефлекторные акты в равной мере и с одинаковой быстротой приводят к развитию утомления. Некоторые рефлексы в течение длительного времени могут протекать, не сопровождаясь развитием утомления. К таким рефлексам относятся, например, проприоцептивные тонические рефлексы, при которых происходит длительное поддержание мышечного тонуса.

З) Рефлекторный тонус нервных центров

Электрофизиологические исследования показывают, что не только при осуществлении того или иного рефлекса, но и в состоянии относительного покоя из нервных центров на периферию к соответствующим органам и тканям поступают разряды нервных импульсов.

Различие состоит лишь в том, что при осуществлении рефлекторной реакции на раздражение эти разряды имеют большую частоту (например, в двигательных нервных волокнах при сильных произвольных движениях— от 50 до 100 импульсов в секунду) и посылаются более или менее одновременно по большому числу эфферентных волокон, а в покое частота разрядов и число одновременно работающих единиц очень малы.

Редкие импульсы, непрерывно, поступающие из нервных центров на периферию, обусловливают тонус скелетных мышц, тонус гладких мышц кишечника, сосудистый тонус.

Такое постоянное возбуждение нервных центров носит название тонуса нервных центров. В его поддержании участвуют как афферентные импульсы, поступающие непрерывно от периферических рецепторов в центральную нервную систему, так и различные гуморальные раздражители (гормоны, СО2 и др.).

Зависимость функции нервных центров от снабжения их кислородом

Нервные клетки отличаются интенсивным обменом веществ и потреблением кислорода. Так, 100 г ткани головного мезга собаки потребляют кислорода в 22 раза больше, чем 100 г мышечной ткани, находящейся в покое, и в 10 раз больше, чем 100 г печени. Мозг человека поглощает приблизительно 40—50 мл кислорода в минуту, что составляет примерно одну восьмую всего количества кислорода, потребляемого телом в состоянии покоя.

Потребляя большие количества кислорода, нервные клетки высокочувствительны к его недостатку. Поэтому уменьшение доставки кислорода к центральной нервной системе быстро влечет за собой нарушения ее функций. Этим объясняется тот факт, что полное или частичное прекращение кровообращения мозга (например, при тромбозе или разрыве кровеносного сосуда) ведет к тяжелым расстройствам деятельности нервной системы и к гибели нервных элементов. Даже кратковременная остановка мозгового кровообращения или кратковременное резкое падение давления в кровеносных сосудах головного мозга вызывает у человека немедленную потерю сознания. Особенно сильно страдают в случае прекращения кровоснабжения клетки коры больших полушарий головного мозга: уже через 5—6 минут они подвергаются необратимым изменениям и погибают. Центры ствола мозга менее чувствительны к недостатку кислорода: их функция восстанавливается даже после 15—20 минут полного прекращения кровообращения. Центры спинного мозга еще более выносливы: их функция может восстанавливаться даже через 20—30 минут после полного прекращения притока к ним крови.

При гипотермии, т е. искусственном понижении температуры тела, когда снижается обмен веществ организма, центральная нервная система дольше переносит недостаток кислорода.

Координация рефлекторных процессов

Каждый рефлекс представляет собой реакцию всей центральной нервной системы, зависит от ее состояния в данный момент и от всей совокупности межцентральных соотношений и взаимодействий. Взаимодействие нейронов, а следовательно, и нервных процессов в центральной нервной системе, обеспечивающее ее согласованную деятельность, носит название координации.

Установлен ряд общих закономерностей — принципов координации.

А) Конвергенция

Импульсы, приходящие в центральную нервную систему по различным афферентным волокнам, могут сходиться (конвергировать)к одним и тем же промежуточным и эффекторным нейронам. Этот факт лег в основу принципа конвергенции, установленного Шеррингтоном. Конвергенция нервных импульсов объясняется тем, что на теле и дендритах каждого нейрона в центральной нервной системе оканчиваются аксоны множества других нервных клеток. В спинном и продолговатом мозге конвергенция имеет сравнительно ограниченный характер: на вставочных и моторных нейронах конвергируют преимущественно афферентные импульсы, возникающие в различных участках рецептивного поля только одного и того же рефлекса. В отличие от этого в высших отделах центральной нервной системы — подкорковых ядрах и коре больших полушарий — наблюдается конвергенция импульсов, исходящих из разных рецептивных зон. Поэтому один и тот же нейрон может возбуждаться импульсами, возникающими при раздражении и слуховых, и зрительных, и кожных рецепторов.

Конвергенция объясняет пространственную суммацию возбуждений и явление окклюзии.

Б) Иррадиация возбуждения

Импульсы, поступающие в центральную нервную систему при сильном и длительном раздражении, вызывают возбуждение не только нейронов данного рефлекторного центра, но и других нервных центров. Это распространение возбуждения в центральной нервной системе получило название иррадиации.

Морфологические и электрофизиологические исследования показали, что возможность иррадиации возбуждений в центральной нервной системе обусловлена многочисленными ветвлениями отростков (аксонов и дендритов) нервных клеток и цепями вставочных нейронов, объединяющих друг с другом различные нервные центры. Особую роль в механизме иррадиации возбуждения играет ретикулярная формация.

Иррадиации возбуждения препятствуют многочисленные тормозные нейроны и синапсы, входящие в состав различных рефлекторных центров.

Если под влиянием столбнячного токсина происходит нарушение тормозного процесса относительно изолированно в какой-либо группе вставочных нейронов, то эта группа превращается в источник мощного возбуждения, которое достигает мотонейронов в разных отделах центральной нервной системы. Образно говоря, такая группа вставочных нейронов выполняет роль «станции универсального отправления» импульсов (Г. Н. Крыжановский). Такой механизм играет важную роль в иррадиации возбуждений, приводящей к судорожным припадкам.

В) Реципрокная (сопряженная) иннервация

При возбуждении центра сгибательной мускулатуры одной конечности происходит торможение центра разгибательной мускулатуры той же конечности и возбуждение центра мышц-разгибателей второй конечности.

Таким образом, центры мышц-антагонистов — сгибателей и разгибателей — находятся при выполнении многих двигательных актов в противоположном состоянии. Лишь при этом возможно точное движение сгибания или разгибания. Анализ подобных явлений привел к представлению о реципрокной, или сопряженной, иннервации мышц-антагонистов. Согласно этому представлению, возбуждение центра одной группы мышц сопровождается реципрокным (сопряженным) торможением центров антагонистической мускульной группы.

Г) Последовательная смена возбуждения торможением и торможения возбуждением

При исследовании механизмов координации рефлекторных актов часто встречаются контрастные изменения состояния нервного центра, возникающие после прекращения возбуждающего или тормозящего раздражения. Эти изменения состоят в том, что вслед за торможением наблюдается усиленное возбуждение («положительная последовательная индукция»), а вслед за возбуждением — торможение («отрицательная последовательная индукция»).

Читайте также:  В какой период часто возникает утомление окончание учебной недели

Контрастное усиление возбуждения вслед за торможением и торможения вслед за возбуждением И. П. Павлов наблюдал при изучении условнорефлекторной деятельности и назвал их явлениями последовательной корковой положительной или отрицательной индукции.

Д) Феномен «отдачи» и ритмические рефлексы

Феномен отдачи. Феномен отдачи состоит в быстрой смене одного рефлекса другим противоположного значения. Так, по прекращении раздражения, вызвавшего сильный сгибательный рефлекс, наступает резкое разгибание согнутой конечности. Это объясняется тем, что при сгибании конечности центр разгибания находится в состоянии реципрокного торможения; к этому центру, однако, непрерывно притекают слабые возбуждающие импульсы от расслабленной и растянутой мышцы. Как только рефлекторное сгибание закончилось и прекратилось торможение в центре разгибателей, возникает сильное их возбуждение. Причиной его является поток импульсов от растянутой разгибательной мускулатуры, точнее от ее рецепторов.

Благодаря такому механизму один рефлекс может вызвать противоположный ему второй, за которым появится третий, за ним четвертый и т. д.

Цепные и ритмические рефлексы. Сложные рефлекторные акты, в которых конец одного рефлекса обусловливает возникновение другого, получили название цепных рефлексов. Часто при цепных рефлексах происходит чередование в определенной последовательности одних и тех же отдельных простых рефлекторных актов, которые ритмически повторяются. Такие рефлексы называются ритмическими. К ним относятся рефлексы типа шагания, почесывания и др. При этих рефлексах, которые могут наблюдаться и у спинальных животных, происходит последовательная смена движений сгибания и разгибания одной или нескольких конечностей в определенном ритме. Смена движений, составляющих отдельные фазы ритмического цепного рефлекса, обеспечивается последовательной индукцией, а также вторичными центростремительными импульсами от работающих мышц.

Е) Принцип обратной связи

Всякий двигательный акт, вызываемый тем или иным афферентным раздражением, сопровождается возбуждением рецепторов мышц, сухожилий и суставных сумок — проприорецепторов, от которых нервные импульсы поступают в центральную нервную систему. Если совершаемое человеком движение контролируется зрением, то к проприоцептивным импульсам присоединяются также зрительные сигналы. В случае же, когда результатом движения является возникновение какого-либо звука (например, при нажатии пальцем на клавиш рояля), в центральную нервную систему поступают и слуховые сигналы.

Подобные афферентные импульсы, рождающиеся в организме в результате деятельности органов и тканей, получили название вторичных афферентных импульсовв отличие от тех, которые первично вызвали данный рефлекторный акт.

Вторичные афферентные импульсы непрерывно сигнализируют нервным центрам о состоянии двигательного аппарата, и в ответ на эти сигналы из центральной нервной системы к мышцам поступают новые двигательные импульсы, включающие следующую фазу движения или изменяющие его в соответствии с условиями деятельности.

источник

Особенности работы нервных центров:

1. Задержка проведения — длится 0,5 мсек. По латентному периоду рефлекса можно посчитать сколько

2. Иррадиация (дивергенция) возбуждения – объясняется наличием ветвления аксонов, вставочных нейронов – слабый сигнал может возбудить много нейронов. В опыте на спинальной лягушке сильным стимулом сгибается все туловище. Два типа дивергенции: усиливающаяся – входной сигнал распространяется на множество нейронов на каждом последующем уровне НС (кортико-спинальный путь, который корнтролирует скелетные мышцы – более 1000 моторнейронов); дивергенция во множественные тракты – сигнал подается в двух направлениях от центра (например, сигналы дорсальных корешков спинного мозга).

3. Конвергенция возбуждения (принцип общего конечного пути, воронка Шеррингтона) – много различной информации конвергирует к одному и тому же нейрону благодаря преобладанию афферентных путей над эфферентными и наличию вставочных нейронов. Поскольку на один нейрон может конвергировать множество коллатералей аксонов, поэтому генерация ПД в каждый момент зависит от суммы возбуждающих или тормозных влияний. Конвергенция облегчает возникновения возбуждения на нейроне в результате пространственной суммации подпороговых ВПСП либо блокироваnbm возбуждение вследствие преобладания тормозных влияний. К. мрожет происходить от коллатералей единичного нейронов, так и от коллатералей множественных нейронов (например, интернейроны спинного мозга получают сигналы от кортико-спинальнвых путей коры большого мозга, нисходящих путей, проприоцептивных нейронов, пересекающих спинной мозг от одного сегмента спинного мозга к другому, различных периферических НВ. Результатом будет суммарный эффект различных типов информации.) К. – соотношение суммации и сортировки информации. Феномен конвергенции объясняет почему различные сигналы могут вызвать один и тот же эффект (глядя на улыбающегося младенца

4. Циркуляция возбуждения по замкнутым нейронным цепям (последействие) от нескольких долей мсек до нескольких минут после того, как входящий сигнал перестал действовать. Один из механизмов является реверберация возбуждения. Она объясняется положительной обратной связью внутри нейронного круга, когда возбуждается в ход в тот же круг, и циркуляция длится некоторое время. На механизме реверберации основана кратковременная память. Интенсивность входного сигнала в первый момент очень высокая, увеличивается постепенно до максимума, затем постепенно уменьшается до какой-то критической точки и исчезает. Другой механизм реверберации – параллельное последействие – достижение конечного выходного пути в разное время благодаря.

1. Суммация возбуждения – быстрое раздражение слабыми редкими бывает пространственная (в результате стимуляции нескольких нейронов, которые конвергируют на одном, суммируются ВПСП и в результате может возникнуть ПД) и временная (быстрая стимуляция одного и того же аксона, происхордит суммация ВПСПС, котороые позволяют достичь порога возбуждения).

2. Фоновая активность нервных центров (тонус) – обеспечивает исходное деятельное состояние мозга, объснЯетс спонтанной активностью нейронов, гуморальными влияниями и влиянием некоторый БАВ (гормонов, продуктов метаболизма, медиаторов).

3. Трансформация ритмов возбуждения – изменение ичсла импульсов на выходе из нейрона относительно числа импульсов на входе. Может быть как в сторону увеличения, так в сторону уменьшения импульса. Уменьешние в результате избыточного потока информации, а также пре- и постсинаптического торможения, увеличение в результате иррадиации возбуждения и последействия.

4. Большая чувствительность к изменениям внутренней среды (снижение кислорода, глюкозы в крови приводит к потере сознания, защелачивание – к перевозбуждению рН, закисление внутренней среды вызывает кому.)

5. Низкая функциональная подвижность (лабильность) и высокая утомляемость. Лабильность – количество нервных импульсов, которые генерируются в одну секунда. Утомляемо ть вызвана истощением медиаторов в синапсах, снижением концентрации питательных веществ и кислорода.

6. Посттетаническая потенциация – усиление рефлекторного ответа после длительного ритмического раздражения нервного центра.

7. Пластиность – споосбность нервных элементов к перестройке функциональных свойсвт. Плстичность проявляется в синаптическом облегчении – уменьшение проведения в синапсах после короткого подпорогового раздражения афферентных путей, она зависит от свойств синапса и от характера раздражения (серия подпороговых импульсов вызывает облегчение, которое длится в течение нескольких часов. Причиной синаптического облегчение является накопление ионов кальция в пресинаптическом окончании, которые мобилизуют пустые пузырьки для медиаторов, способствует синтезу медиатора и высвобождению большего количества медиатора.

Значение облегчения в том, что оно создает предпаосылки для улучшения переработки информации на нейронах. Пластичность проявлятся также в доминантном состоянии, ктоорое возникает при повторном облегчении в нервном центре. Доминантна- стойкий господстующий очаг возбуждения в ЦНС, который подчиняет себе фукнции другий нервнйх центров. Суммация слабых импульсов создают доминантный очаг, который затем подкрепляется афференртными вобзеждениями других нервных центров (например, если раздражать коркоde. Задачи доминаты – освободить организм от побочной деятельности для достижения необходимой потребности путем формирования приспособительного поведения. Стимуляция ценьтров голода

Пластичность проявляется в утомлении нервных центров

Проявляется в замедлении и исчезновении реакций (если стимулировать кожу конечности – сгибание, если перенести стимулирующий участок на

Утомление происходит в результате истощения медиаторов в синапсах или накопления метаболитов во внутренней среде. Пластичность также провялвется в компенсации нарушенных функций после повреждения нервного stynhf (после кровоизлияния в мозг нарушаются) повышение активности сохранившихся нейронов и вовлечение в функцию других нейронов с подобными функциями, рассеянных по коре большого мозга.компенсаци способствут регулярыне активные и пассивныеы движения, то есть деятельность.

Торможение – активный нервный процесс, в результате которого происходит прекращение или ослабление возбуждения. Торможение всегда вторично по отношению к возбуждению, возникает как его следствие. Роль торможения:

1) Охранительная – защита от переизбытка информации;

2) Участие в обработке информации – торможение регулирует возбуждение, вызванное поступающими стимулами;

3) Обеспечение согласованной деятельности в различных отделах ЦНС в результате упорядочивания возбуждения между ними.

Бывает два вида тормотжения. Постсинаптическое торможение развивается под вдиянием тормозных медаиаторов (глицин и ГАМК). Эти медиаторы повышают проводимость постсинаптисекой мембраны для ионов хлора, который будет входить , калий будет выходить, развивается гиперполяризация мембраны и ТПСП. Этот тормозной потенциал снижает возбудимость клетки, увелчичивая предпороговый потенциал. КУД остается на прежнем уровне и препятствует возникновению ПД.

Виды постсинаптического торможения:

1) Параллельное – возбуждение через вставочный тормозной нейрон блокирует само себя.

2) Возвратное – через вставочный тормозной нейрон тормозхит само себя

3) Латеральное – тормозные вставочные нейроны активируются импульсами от возбуждающего центра и влияют на соседние клетки с такими же функциями. Зона торможения находится сбоку от возбуждающего нейрона. В афферентных путях этот вид торможения обеспечивает выделение существенных сигналов из фона.

4) Прямое – реципрокное торможение центров антагонистов мышц.

Пресинаптическое торможение осуществляется нейронами ,аксоны которых оканчиваются на возбуждающих синаптических окончаниях другого нейрона, образуя аксо-аксонные синапсы. Аксона А выделяет медаитор, который повышает проводимость для хлора на мембране возбуждающего окончания В, развивается гиперполяризация, снижается возбудимость, происходит увеличение порога ПД.

Пресинапстический возбуждающий нейрон А выделяет медиатор, вызывающий длительное возбуждение окончания В, что приводит к инактивации потенциалзависимых натриевых каналов этого окончания и торможению его активности.

Координационная деятельность НС – согласование деятельности различных отделов ЦНС с помощью упорядочивания возбуждения и торможения между ними. Ряд факторов обеспечивает взаимодействие отделов ЦНС между собой. Во первых, это структурно-функциональные связи между отделами ЦНС, между ЦНС и различными органами. Варианты связи:

1) прямая связь – управление центром или органом с помощью посылки к нему эфферентных импульсов.

2) обратная связь – управление центром или органом с помощью посылки афферентных импульсов, поступающих от них.

Если нарушить прямую связь, управление становится невозможным, если нарушить обратную связь мозг становится несовершенным.

3) Возвратная — обеспечивает торможение нейрона вслед за его возбуждением

4) Реципрокное – при возбуждении агониста торможение антагониста (возбуждение центра вдоха тормозит центр выдоха, возбуждение жевания тормозит глотание).

Принцип модульной (ансамблевой) организации.

Нейроны в коре большого мозга объеденены в ансамлбли. Ансамбль приобреате новые свойства, не характерные для отдельного нейрона. Деятельность отдельного нейрона в соаставе модуля зависит не только от сигналов, поступающий к нему, но и то процессов, обусловленных конструкцией модуля. Признаком модульной организации является локальное одновременное действие нейронов в центральной части ансамбля, которые окружены зоной заторможенных нейронов (тормозная окантовка). Каждый модуль обрабатыват и передает информацию с помощью внешних и внутренни связей он может входить в состав различных функциональных образований.

Фактор суборадинации – подчинение нижележащих центров вышележащим. Еще ордин фактор силы процесса возбуждения при поступлении импульсов к одному и тому же нейроны от различных рефлексогенных зон происходит конкуренция за общий конечный путь.

Одностороннее проведения возбуждения в химических синапсах.

Синаптическое облегчение при выработке навыков способствует быстрому и точному распространению возбуждения по проторенным путям, возбудимость которых повышена.

Доминантное состояние двгательных центров обеспечивает автоматизированное выполнение двигательных актов, движения являются более экономичными в энергетическом и эмоциональном плане.

Интегративная деятельность ЦНС – соподчинение и объединение тканей и органов НС в единую центральную периферическую систему, задача которой передавать и обрабатывать информацию. На уровне нейрона, на уровне нейронного ансамбля, уровень нервных центров (являются командными), высших уровень сознания объединяет лимбическую систему, ретикулярную формацию, подкорковые образования и новую кору, которые обеспечивают поведение, сознание и вегетативное обеспечение организма.

источник

Морфологические и функциональное определение нервного центра. Свойства нервных центров.

Нервный центр — это центральная часть рефлекторной дуги.

Анатомический нервный центр — это совокупность нервных клеток, выполняющих общую для них функцию и лежащих в определенном отделе ЦНС.

В функциональном отношении нервный центр это сложное объединение нескольких анатомических нервных центров, расположенных в разных отделах ЦНС и обусловливающих сложнейшие рефлекторные акты.

А.А. Ухтомский называл такие объединения «созвездиями» нервных центров. Различные анатомические нервные центры объединяются в ФУС для получения определенного полезного результата.

Нервные центры также непосредственно реагируют на БАВ, содержащиеся в протекающей через них крови (гуморальные влияния).

Для выявления функций нервных центров используют ряд методов:

1. метод электродного раздражения;

2. метод экстирпации (удаления, для нарушения исследуемой функции);

3. электрофизиологический метод регистрации электрических явлений в нервном центре и др.

Свойства нервных центров в значительной мере связаны с обилием синапсов и с особенностями проведения импульсов через них. Именно синаптические контакты определяют основные свойства нервных центров:

1 — односторонность проведения возбуждения;

2 — замедление проведения нервных импульсов;

4 — усвоению и трансформацию ритма возбуждений;

Одностороннее проведение возбуждения означает распространение импульса только в одном направлении — от чувствительного нейрона к двигательному. Это обусловлено синапсами, где проведение информации с помощью нейротрансмиттеров (медиаторов) идет от пресинаптической мембраны через синаптическую щель к постсинаптической мембране. Обратное проведение невозможно, чем достигается направленность потоков информации в организме.

Замедление проведения импульсов связано с тем, что электрический способ передачи информации в синапсах сменяется химическим (медиаторным) способом, который в тысячу раз медленнее. Время синаптической задержки в мотонейронах соматической НС составляет 0,3 мс. В вегетативной НС такая задержка более длительна, т.е. не менее 10 мс.

Читайте также:  Что следует понимать под утомлением

Множество синапсов на пути нервного импульса обеспечивают суммарную задержку, когда время задержки — центральное время проведения увеличивается до сотен и более мс.

Например, время реакции водителя на включение красного света светофора составляет не менее 200 мс, а при утомлении может превышать 1000 мс. Время от начала действия раздражителя до начала ответной реакции называется временем реакции или латентным (скрытым) временем рефлекса.

Суммация возбуждений была открыта И.М. Сеченовым в 1863 году. В нервном центре различают два вида суммации:

Временная суммация возникает при последовательном поступлении к постсинаптической мембране нейрона серии импульсов, в отдельности не вызывающих возбуждение нейрона. Сумма этих импульсов достигает пороговой величины раздражения и только после этого вызывает появление потенциала действия.

Пространственная суммация наблюдается при одновременном поступлении к нейрону нескольких слабых импульсов, которые в сумме достигают пороговой величины и вызывают появление потенциала действия.

Усвоение и трансформация ритма возбуждений в нервных центрах были изучены А.А. Ухтомским и его учениками (Голиковым, Жуковым и др.). Нейроны способны настраиваться на ритм раздражений как на более высокий, так и на более низкий. В результате такой способности нервные клетки сонастраиваются, работают сообща в едином ритме. Это имеет большое значение для взаимодействия между различными нервными центрами и создания временных ФУС для достижения определенного полезного результата. С другой стороны, нейроны способны трансформировать (изменять) ритм поступающих к ним импульсов в собственный ритм.

Следовые процессы или последействие означает, что после окончания действия раздражителя активное состояние нервного центра продолжается еще некоторое время. Длительность следовых процессов различна. В спинном мозге — несколько секунд или минут. В подкорковых центрах мозга — десятки минут, часы и даже дни. В коре больших полушарий — до нескольких десятков лет.

Следовые процессы имеют важное значение в понимании механизмов памяти. Непродолжительное последействие до 1 часа связано с циркуляцией импульсов в нервных цепях (Р. Лоренте де Но, 1934) и обеспечивает кратковременную память. Механизмы долговременной памяти основаны на изменении структуры белков. В процессе запоминания, согласно биохимической теории памяти (Х. Хиден, 1969) происходят структурные изменения в молекулах РНК, на основе которых строятся измененные белки с отпечатками прежних раздражителей. Эти белки длительно содержатся в нейронах, а также в глиальных клетках головного мозга.

Разные нервные центры имеют различную скорость утомления. Менее утомляемы центры ВНС, координирующие работу внутренних органов. Значительно более утомляемы центры СНС, управляющие произвольной скелетной мускулатурой.

Тонус нервных центров определяется тем, что в состоянии покоя часть его нервных клеток находятся в возбуждении. Импульсы обратной афферентации от рецепторов исполнительных органов постоянно идут к нервным центрам, поддерживая в них тонус. В ответ на информацию с периферии центры посылают редкие импульсы к органам, поддерживая в них соответствующий тонус. Даже во время сна мышцы не расслабляются полностью и контролируются соответствующими центрами.

Влияние химических веществ на работу нервных центров определяется химическим составом крови и тканевой жидкости. Нервные центры очень чувствительны к дефициту кислорода и глюкозы. Клетки коры мозга погибают уже через 5-6 минут, клети ствола мозга выдерживают 15-20 минут, а клетки спинного мозга восстанавливают свои функции даже через 30 минут после полного прекращения кровоснабжения.

Существуют химические вещества избирательного действия. Стрихнин возбуждает нервные центры, блокируя работу тормозных синапсов. Хлороформ и эфир сначала возбуждают, а затем подавляют работу нервных центров. Апоморфин возбуждает рвотный центр, цититон и лобелин — дыхательный центр, а морфин угнетает его работу. Коразол возбуждает клетки двигательной зоны коры, вызывая эпилептические судороги.

Вывод. Функциональные возможности и свойства нервных центров зависят от состояния внутренних механизмов и влияния внешних факторов, действующих на организм.

источник

Учение о рефлекторной деятельности ЦНС привело к развитию представления о нервном центре.

Нервным центром называют совокупность нейронов, необходимых для осуществления определенного рефлекса или регуляции той или иной функции.

Не следует понимать нервный центр как что-то узко локализованное в одном участке ЦНС. Понятие анатомическое по отношению к нервному центру рефлекса неприменимо потому, что в осуществлении любого сложного рефлекторного акта принимает участие всегда целая констелляция нейронов, расположенных на разных этажах нервной системы. Опыты с раздражением или перерезкой ЦНС показывают лишь, что отдельные нервные образования обязательны для осуществления того или иного рефлекса, а другие необязательны, хотя и участвуют при обычных условиях в рефлекторной деятельности. Примером служит дыхательный центр, в который в настоящее время включают не только «центр дыхания» продолговатого мозга, но и пневмотаксический центр моста, нейроны ретикулярной формации, коры и мотонейроны дыхательных мышц.

Нервные центры обладают рядом характерных свойств, определяемых свойствами составляющих его нейронов, особенностями синаптической передачи нервных импульсов и структурой нейронных цепей, образующих этот центр.

Свойства эти следующие:

1.Одностороннее проведение в нервных центрах можно доказать при раздражении передних корешков и отведении потенциалов от задних. В этом случае осциллограф не зарегистрирует импульсов. Если поменять электроды — импульсы будут поступать нормально.

2.Задержка проведения в синапсах. По рефлекторной дуге проведение возбуждения происходит медленнее, чем по нервному волокну. Это определяется тем, что в одном синапсе переход медиатора к постсинаптической мембране происходит за 0,3-0,5 мсек. (т.н. синаптическая задержка). Чем больше синапсов в рефлекторной дуге, тем больше время рефлекса, т.е. интервал от начала раздражения до начала деятельности. С учетом синаптической задержки проведение раздражения через один синапс требует около 1,5-2 мсек.

У человека наименьшую продолжительность имеет время сухожильных рефлексов (оно равно 20-24 мсек. У мигательного рефлекса оно больше 0 50-200 мсек. Время рефлекса складывается из:

а) времени возбуждения рецепторов;

б) времени проведения возбуждения по центростремительным нервам;

в) времени передачи возбуждения в центре через синапсы;

г) времени проведения возбуждения по центробежным нервам;

д) времени передачи возбуждения на рабочий орган и латентного периода его деятельности.

Время «в» носит название центрального времени рефлекса.

Для упомянутых выше рефлексов оно составляет соответственно 3 мсек. и 36-180 мсек. Зная центральное время рефлекса, и учитывая, что через один синапс возбуждение проходит за 2 мсек., можно определить число синапсов в рефлекторной дуге. Например, коленный рефлекс считают моносинаптическим.

3.Суммация возбуждений. Впервые Сеченов показал, что в целостном организме рефлекторный акт может осуществляться при действии подпороговых стимулов, если они действуют на рецепторное поле достаточно часто. Такое явление получило название временной (последовательной) суммацией . Пример — рефлекс чесания у собаки можно вызвать, если подать в одну точку подпороговые стимулы с частотой 18 гц. Суммация подпороговых стимулов можно получить и тогда, когда они прикладываются на разные точки кожи, но одновременно — это пространственная суммация.

В основе этих явлений лежит процесс суммации возбуждающих постсинаптических потенциалов на теле и дендритах нейронов. При этом происходит накопление медиатора в синаптической щели. В естественных условиях оба вида суммации сосуществуют.

4.Центральное облегчение. Возникновение временной и особенно пространственной суммации способствуют и особенности организации синаптического аппарата в нервных центрах. Каждый аксон, поступая в ЦНС, ветвится и образует синапсы на большой группе нейронов (нейронный пул, или нейронная популяция). В такой группе принято условно различать центральную (пороговую) зону, и периферическую (подпороговую) кайму. Нейроны, находящиеся в центральной зоне, получают от каждого рецепторного нейрона достаточное количество синаптических окончаний для того, чтобы ответить разрядом ПД на приходящие импульсы. На нейронах же подпороговой каймы каждый аксон образует лишь небольшое число синапсов, возбуждение которых не способно возбудить нейрон. Нервные центры состоят из большого числа нейронных групп, причем отдельные нейроны могут входить в разные нейронные пулы. Это объясняется тем, что на одних и тех же нейронах оканчиваются разные афферентные волокна. При совместном раздражении этих афферентных волокон возбуждающие постсинаптические потенциалы в нейронах подпороговой каймы суммируются друг с другом и достигают критической величины. В результате в процесс возбуждения оказываются вовлеченными и клетки периферической каймы. При этом сила рефлекторной реакции суммарного раздражения нескольких «входов» в центр оказывается больше арифметической суммы раздельных раздражений. Этот эффект и носит название центрального облегчения.

5. Центральная окклюзия (закупорка). Может наблюдаться в деятельности нервного центра и обратный эффект, когда одновременное раздражение двух афферентных нейронов вызывает не суммацию возбуждения, а задержку, уменьшение силы раздражения. В этом случае суммарная реакция меньше арифметической суммы раздельных эффектов. Происходит это потому, что отдельные нейроны могут входить в центральные зоны разных нейронных популяций. В таком случае появление возбуждающих постсинаптических потенциалов на телах нейронов не приводят к увеличению числа возбужденных одновременно клеток. Если суммация лучше проявляется при действии слабых афферентных раздражений, то явления окклюзии хорошо выражены с случае применения сильных афферентных раздражений, каждое их которых активирует большое число нейронов. Более наглядно эти эффекты видны на схемах в таблицах.

6.Трансформация ритма возбуждений. Частота и ритм импульсов, поступающих к нервным центрам, и посылаемых ими на периферию, могут не совпадать. Это явление носит название трансформации. В ряде случаев на одиночный импульс, приложенный к афферентному волокну, мотонейрон отвечает серией импульсов. Образно говоря, в ответ на одиночный выстрел нервная клетка отвечает очередью. Чаще это бывает при длительном постсинаптическом потенциале и зависит от триггерных свойств аксонного холмика.

Другой механизм трансформации связан с эффектами сложения фаз двух или более волн возбуждения на нейроне — тут возможны эффекты как увеличения , так и снижения частоты выходящих из центра стимулов.

7.Последействие. Рефлекторные акты, в отличие от потенциалов действия, заканчиваются не одновременно с прекращением вызвавшего их раздражения, а через некоторый, иногда сравнительно длинный период времени. Продолжительность последействия может во много раз превышать продолжительность раздражения. Последействие обычно бывает больше при сильном и длительном раздражении.

Имеются два основных механизма, обусловливающих эффект последействия. Первый связан с суммацией следовой деполяризации мембраны при частых раздражениях (посттетаническая потенциация), когда нервная клетка продолжает давать разряды импульсов, несмотря на то, что кончилась серия раздражений. Второй механизм связывает последействие с циркуляцией нервных импульсов по замкнутым нейронным сетям рефлекторного центра.

8. Утомление нервных центров. В отличие от нервных волокон нервные центры легко утомляемы. Утомление нервного центра проявляется в постепенном снижении и в конечном итоге полном прекращении рефлекторного ответа при продолжительном раздражении афферентных нервных волокон. Если после этого приложить раздражение в эфферентному волокну — эффект возникает вновь.

Утомление в нервных центрах связано прежде всего с нарушением передачи возбуждения в межнейронных синапсах. Такое нарушение зависит от уменьшения запасов синтезированного медиатора, уменьшением чувствительности к медиатору постсинаптической мембраны, уменьшением энергетических ресурсов нервной клетки. Не все рефлекторные акты утомляются быстро (например, мало утомляемы проприоцептивные тонические рефлексы).

9.Рефлекторный тонус нервных центров. В его поддержании участвуют как афферентные импульсы, поступающие непрерывно от периферических рецепторов в ЦНС, так и различные гуморальные раздражители (гормоны, углекислота, и др.)

10.Высокая чувствительность к гипоксии. Показано, что 100 г. нервной ткани в единицу времени потребляет кислорода в 22 раза больше, чем 100 г. мышечной ткани. Поэтому нервные центры очень чувствительны к его недостатку. При этом чем выше центр, тем более страдает он от гипоксии. Для коры мозга 5-6 минут достаточно, чтобы без кислорода произошли необратимые изменения, клетки ствола мозга выдерживают 15-20 минут полного прекращения кровообращения, а клетки спинного мозга — 20-30 минут. При гипотермии, когда снижается обмен веществ, ЦНС дольше переносит гипоксию.

11.Избирательная чувствительность к химическим веществам. Объясняется особенностями обменных процессов и позволяет находить фармпрепараты направленного действия.

Дата добавления: 2016-03-05 ; просмотров: 711 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

источник

  • Физиология
  • История физиологии
  • Методы физиологии

Нервный центр — это совокупность нейронов, необходимых для осуществления определенного рефлекса или регуляции определенной функции.

Основными клеточными элементами нервного центра являются многочисленные нейроны, скопление которых формирует нервные ядра. В состав центра могут входить нейроны, рассеянные за пределами ядер. Нервный центр может быть представлен структурами мозга, располагающимися на нескольких уровнях центральной нервной системы (например, центры регуляции дыхания, кровообращения, пищеварения).

Любой нервный центр состоит из ядра и периферии.

Ядерная часть нервного центра представляет собой функциональное объединение нейронов, в которое поступает основная информация от афферентных путей. Повреждение этого участка нервного центра приводит к повреждению или существенному нарушению осуществления данной функции.

Периферическая часть нервного центра получает небольшую порцию афферентной информации, и ее повреждение вызывает ограничение или уменьшение объема выполняемой функции (рис. 1).

Функционирование центральной нервной системы осуществляется благодаря деятельности значительного числа нервных центров, представляющих собой ансамбли нервных клеток, объединенных с помощью синаптических контактов и отличающихся огромным разнообразием и сложностью внутренних и внешних связей.

Рис. 1. Схема общего строения нервного центра

В нервных центрах выделяют следующие иерархические отделы: рабочие, регуляторные и исполнительные (рис. 2).

Рис. 2. Схема иерархического подчинения разных отделов нервных центров

Рабочий отдел нервного центра ответствен за осуществление данной функции. Например, рабочий отдел дыхательного центра представлен центрами вдоха, выдоха и пневмотаксиса, расположенными в продолговатом мозге и варолиевом мосту; нарушение этого отдела вызывает остановку дыхания.

Регуляторный отдел нервного центра — это центр, расположенный в коре больших полушарий мозга и регулирующий активность рабочего отдела нервного центра. В свою очередь, активность регуляторного отдела нервного центра зависит от состояния рабочего отдела, который получает афферентную информацию, и от внешних стимулов среды. Так, регуляторный отдел дыхательного центра расположен в лобной доле коры больших полушарий и позволяет произвольно регулировать легочную вентиляцию (глубину и частоту дыхания). Однако эта произвольная регуляция небезгранична и зависит от функциональной активности рабочего отдела, афферентной им пульсации, отражающей состояние внутренней среды (в данном случае рН крови, концентрации углекислого газа и кислорода в крови).

Исполнительный отдел нервного центра — это двигательный центр, расположенный в спинном мозге и передающий информацию от рабочего отдела нервного центра к рабочим органам. Исполнительный отдел дыхательного нервного центра расположен в передних рогах грудного отдела спинного мозга и транслирует приказы рабочего центра к дыхательным мышцам.

С другой стороны, одни и те же нейроны головного и спинного мозга могут участвовать в регуляции разных функций. Например, клетки центра глотания участвуют в регуляции не только акта глотания, но и акта рвоты. Этот центр обеспечивает все последовательные стадии акта глотания: движение мышц языка, сокращение мышц мягкого неба и его поднятие, последующее сокращение мышц глотки и пищевода при прохождении пищевого комка. Эти же нервные клетки обеспечивают сокращение мышц мягкого нёба и его поднятие во время акта рвоты. Следовательно, одни и те же нервные клетки входят и в центр глотания, и в центр рвоты.

Свойства нервных центров зависят от их строения и механизмов передачи возбуждения в синапсах. Выделяются следующие свойства нервных центров:

  • Односторонность проведения возбуждения
  • Синаптическая задержка
  • Суммация возбуждения
  • Трансформация ритма
  • Утомляемость
  • Конвергенция
  • Дивергенция
  • Иррадиация возбуждения
  • Концентрация возбуждения
  • Тонус
  • Пластичность
  • Облегчение
  • Окклюзия
  • Реверберация
  • Пролонгирование

Одностороннее проведение возбуждение в нервном центре. Возбуждение в ЦНС проводится в одном направлении с аксона на дендрит или тело клетки следующего нейрона. Основу этого свойства составляют особенности морфологической связи между нейронами.

Одностороннее проведение возбуждения зависит от строения синапса и гуморальной природы передачи в нем импульса: медиатор, осуществляющий передачу возбуждения, выделяется только в пресинаптическом окончании, а рецепторы, воспринимающие медиатор, расположены на постсинаптической мембране;

Замедление проведения возбуждения (центральная задержка). В системе рефлекторной дуги медленнее всего проводится возбуждение в синапсах ЦНС. В связи с этим центральное время рефлекса зависит от количества вставочных нейронов.

Чем сложнее рефлекторная реакция, тем больше центральное время рефлекса. Его величина связана со сравнительно медленным проведением возбуждения через последовательно включенные синапсы. Замедление проведения возбуждения создается вследствие относительной длительности осуществляющихся в синапсах процессов: выделения медиатора через пресинаптическую мембрану, его диффузии через синаптическую щель, возбуждения постсинаптической мембраны, возникновения возбуждающего постсинаптического потенциала и его перехода в потенциал действия;

Трансформация ритма возбуждения. Нервные центры способны изменять ритм поступающих к ним импульсов. Они могут отвечать на одиночные раздражители серией импульсов или на раздражители небольшой частоты — возникновением более частых потенциалов действия. В результате ЦНС посылает к рабочему органу количество импульсов, относительно независимое от частоты раздражений.

Это связано с тем, что нейрон является изолированной единицей нервной системы, к нему в каждый момент приходит множество раздражений. Под их влиянием происходит изменение мембранного потенциала клетки. Если создается небольшая, но продолжительная деполяризация (длительный возбуждающий постсинаптический потенциал), то один стимул вызывает серию импульсов (рис. 3);

Рис. 3. Схема трансформации ритма возбуждения

Последействие — способность сохранять возбуждение после окончания действия раздражителя, т.е. афферентных импульсов нет, а эфферентные продолжают действовать еще некоторое время.

Последействие объясняется наличием следовой деполяризации. Если следовая деполяризация длительна, то на ее фоне в течение нескольких миллисекунд могут возникать потенциалы действия (ритмическая активность нейрона), вследствие чего сохраняется ответная реакция. Но это дает сравнительно короткий эффект последействия.

Более длительное последействие связано с наличием кольцевых связей между нейронами. В них возбуждение как бы само себя поддерживает, возвращаясь по коллатералям к первоначально возбужденному нейрону (рис. 4);

Рис. 4. Схема кольцевых связей в нервном центре (по Лоренто де Но): 1 — афферентный путь; 2-промежуточные нейроны; 3 — эфферентный нейрон; 4 — эфферентный путь; 5 — возвратная ветвь аксона

Облегчение проведения или проторение пути. Установлено, что после возбуждения, возникшего в ответ на ритмическое раздражение, следующий стимул вызывает больший эффект, или для поддержания прежнего уровня ответной реакции требуется меньшая сила последующего раздражения. Это явление получило название «облегчение».

Его можно объяснить тем, что при первых стимулах ритмического раздражителя происходит перемещение пузырьков медиатора ближе к пресинаптической мембране и при последующем раздражении медиатор быстрее выделяется в синаптическую щель. Это, в свою очередь, приводит к тому, что вследствие суммации возбуждающего постсинаптического потенциала быстрее достигается критический уровень деполяризации и возникает распространяющийся потенциал действия (рис. 5);

Рис. 5. Схема облегчения проведения

Суммация, впервые описанная И.М. Сеченовым (1863) и заключающаяся в том, что слабые по силе раздражители, не вызывающие видимой реакции, при частом повторении могут суммироваться, создавать надпороговую силу и вызывать эффект возбуждения. Различают два вида суммации — последовательную и пространственную.

  • Последовательная суммация в синапсах возникает в том случае, когда по одному и тому же афферентному пути к центрам поступает несколько подпороговых импульсов. В результате суммации местного возбуждения, вызванного каждым подпороговым стимулом, возникает ответная реакция.
  • Пространственная суммация заключается в появлении рефлекторной реакции в ответ на два или несколько подпороговых стимулов, приходящих в нервный центр по разным афферентным путям (рис. 6);

Рис. 6. Свойство нервного центра — суммация пространственная (Б) и последовательная (А)

Пространственную суммацию, как и последовательную, можно объяснить тем, что при подпороговом раздражении, пришедшем по одному афферентному пути, выделяется недостаточное количество медиатора для того, чтобы вызвать деполяризацию мембраны до критического уровня. Если же импульсы приходят одновременно несколькими афферентными путями к одному и тому же нейрону, в синапсах выделяется достаточное количество медиатора, необходимое для пороговой деполяризации и возникновения потенциала действия;

Иррадиация. При возбуждении нервного центра нервные импульсы распространяются на соседние центры и приводят их в деятельное состояние. Это явление получило название иррадиации. Степень иррадиации зависит от количества вставочных нейронов, степени их миелинизации, силы раздражителя. Со временем в результате афферентной стимуляции только одного нервного центра зона иррадиации уменьшается, происходит переход к процессу концентрации, т.е. ограничению возбуждения только в одном нервном центре. Это является следствием уменьшения синтеза медиаторов во вставочных нейронах, в результате чего биотоки не передаются из данного нервного центра на соседние (рис. 7 и 8).

Рис. 7. Процесс иррадиации возбуждения в нервных центрах: 1, 2, 3 — нервные центры

Рис. 8. Процесс концентрации возбуждения в нервном центре

Выражением данного процесса является точная координированная двигательная реакция в ответ на раздражение рецептивного поля. Формирование любых навыков (трудовых, спортивных и т.д.) обусловлено тренировкой двигательных центров, основу которых составляет переход от процесса иррадиации к концентрации;

Индукция. Основой взаимосвязи между нервными центрами является процесс индукции — наведение (индуцирование) противоположного процесса. Сильный процесс возбуждения в нервном центре вызывает (наводит) торможение в соседних нервных центрах (пространственная отрицательная индукция), а сильный тормозной процесс индуцирует в соседних нервных центрах возбуждение (пространственная положительная индукция). При смене этих процессов в пределах одного центра говорят о последовательной отрицательной или положительной индукции. Индукция ограничивает распространение (иррадиацию) нервных процессов и обеспечивает концентрацию. Способность к индукции в значительной степени зависит от функционирования тормозных вставочных нейронов — клеток Реншоу.

От степени развития индукции зависят подвижность нервных процессов, возможность выполнения движений скоростного характера, требующих быстрой смены возбуждения и торможения.

Индукция является основой доминанты — образования нервного центра повышенной возбудимости. Это явление впервые было описано А.А. Ухтомским. Доминантный нервный центр подчиняет себе более слабые нервные центры, притягивает их энергию и за счет этого еще более усиливается. В результате этого раздражение различных рецепторных полей начинает вызывать рефлекторный ответ, характерный для деятельности этого доминантного центра. Доминантный очаг в ЦНС может возникать под влиянием разных факторов, в частности сильной афферентной стимуляции, гормональных воздействий, мотиваций и т.д. (рис. 9);

Дивергенция и конвергенция. Способность нейрона устанавливать многочисленные синаптические связи с различными нервными клетками в пределах одного или разных нервных центров называется дивергенциеи. Например, центральные окончания аксонов первичного афферентного нейрона образуют синапсы на многих вставочных нейронах. Благодаря этому одна и та же нервная клетка может участвовать в различных нервных реакциях и контролировать большое число других нейронов, что приводит к иррадиации возбуждения.

Рис. 9. Формирование доминанты за счет пространственной отрицательной индукции

Схождение различных путей проведения нервных импульсов к одному и тому же нейрону получило название конвергенции. Простейшим примером конвергенции является замыкание на одном двигательном нейроне импульсов от нескольких афферентных (чувствительных) нейронов. В ЦНС большинство нейронов получают информацию от разных источников благодаря конвергенции. Это обеспечивает пространственную суммацию импульсов и усиление конечного эффекта (рис. 10).

Рис. 10. Дивергенция и конвергенция

Явление конвергенции было описано Ч. Шеррингтоном и получило название воронки Шеррингтона, или эффекта общего конечного пути. Данный принцип показывает, как при активации различных нервных структур формируется конечная реакция, что имеет первостепенное значение для анализа рефлекторной деятельности;

Окклюзия и облегчение. В зависимости от взаимного расположения ядерных и периферических зон разных нервных центров может проявиться при взаимодействии рефлексов явление окклюзии (закупорки) или облегчения (суммации) (рис. 11).

Рис. 11. Окклюзия и облегчение

Если происходит взаимное перекрывание ядер двух нервных центров, то при раздражении афферентного поля первого нервного центра условно возникают два двигательных ответа. При активации только второго центра также возни каст два двигательных ответа. Однако при одновременной стимуляции обоих центров суммарный двигательный ответ равен только трем единицам, а не четырем. Это обусловлено тем, что один и тот же мотонейрон относится одновременно к обоим нервным центрам.

Если происходит перекрывание периферических отделов разных нервных центров, то при раздражении одного центра возникает одна ответная реакция, то же наблюдается и при раздражении второго центра. При одновременном возбуждении двух нервных центров возникает три ответных реакции. Потому что мотонейроны, находящиеся в зоне перекрывания и не дающие ответа при изолированном раздражении нервных центров, получают при одновременной стимуляции обоих центров суммарную дозу медиатора, что приводит к пороговому уровню деполяризации;

Утомляемость нервного центра. Нервный центр обладает малой лабильностью. Он постоянно получает от множества высоколабильных нервных волокон большое количество стимулов, превышающих его лабильность. Поэтому нервный центр работает с максимальной загрузкой и легко утомляется.

Исходя из синаптических механизмов передачи возбуждения утомление в нервных центрах может объясняться тем, что но мере работы нейрона истощаются запасы медиатора и становится невозможной передача импульсов в синапсах. Кроме того, в процессе деятельности нейрона наступает постепенное снижение чувствительности его рецепторов к медиатору, что называется десенситизацией;

Чувствительность нервных центров к кислороду и некоторым фармакологическим веществам. В нервных клетках осуществляется интенсивный обмен веществ, для чего необходимы энергия и постоянный приток нужного количества кислорода.

Особенно чувствительны к недостатку кислорода нервные клетки коры больших полушарий головного мозга, после пяти-шести минут кислородного голодания они погибают. У человека даже кратковременное ограничение мозгового кровообращения приводит к потере сознания. Недостаточное снабжение кислородом легче переносят нервные клетки мозгового ствола, их функция восстанавливается через 15-20 мин после полного прекращения кровоснабжения. А функция клеток спинного мозга восстанавливаются даже после 30 мин отсутствия кровообращения.

По сравнению с нервным центром нервное волокно малочувствительно к недостатку кислорода. Помешенное в атмосферу азота, оно только через 1,5 ч прекращает проведение возбуждения.

Нервные центры обладают специфической реакцией на различные фармакологические вещества, что свидетельствует об их специфичности и своеобразии протекающих в них процессов. Например, никотин, мускарин блокируют проведение импульсов в возбуждающих синапсах; их действие приводит к падению возбудимости, уменьшению двигательной активности и полному ее прекращению. Стрихнин, столбнячный токсин выключают тормозящие синапсы, что приводит к повышению возбудимости ЦНС и увеличению двигательной активности вплоть до общих судорог. Некоторые вещества блокируют проведение возбуждения в нервных окончаниях: кураре — в концевой пластинке; атропин — в окончаниях парасимпатической нервной системы. Есть вещества, действующие на определенные центры: апоморфин — на рвотный; лобелии — на дыхательный; кардиазол — на двигательную зону коры; мескалин — на зрительные центры коры и др.;

Пластичность нервных центров. Под пластичностью понимают функциональную изменчивость и приспособляемость нервных центров. Это особенно ярко проявляется при удалении разных отделов мозга. Нарушенная функция может восстанавливаться, если были частично удалены какие-то отделы мозжечка или коры больших полушарий. О возможности полной перестройки центров свидетельствуют опыты по сшиванию функционально различных нервов. Если перерезать двигательный нерв, иннервирующий мышцы конечностей, и его периферический конец сшить с центральным концом перерезанного блуждающего нерва, регулирующего внутренние органы, то через некоторое время периферические волокна двигательного нерва перерождаются (вследствие их отделения от тела клетки), а волокна блуждающего нерва прорастают к мышце. Последние образуют в мышце синапсы, свойственные соматическому нерву, что приводит к постепенному восстановлению двигательной функции. В первое время после восстановления иннервации конечности раздражение кожи вызывает свойственную блуждающему нерву реакцию — рвоту, гак как возбуждение от кожи по блуждающему нерву поступает в соответствующие центры продолговатого мозга. Через некоторое время раздражение кожи начинает вызывать обычную двигательную реакцию, поскольку происходит полная перестройка деятельности центра.

источник