Меню Рубрики

Работа и сила мышц физического утомления

Работа мышц. В основе работы мышц лежит их способность к со­кращению. Сокращаясь, мышца укорачивается, в результате чего про­исходит сближение точек начала и прикрепления мышцы. Сокращение мышц вызывает движения в суставах, изменение положения частей те­ла или, наоборот, закрепление их. Действуя с определенной силой на кости скелета, мышца изменяет по­ложение костных рычагов, совершает механическую работу, которая может быть динамической или статической.

Рис. 31. Схема действия мышц на костные рычаги:

I – рычаг равновесия, II – рычаг силы, III – рычаг скорости; А – точка опоры, 5 – точка приложения силы, В – точка сопротивления

При динамической работе костные рычаги, а вместе с ними и другие части тела перемещаются в прост­ранстве, изменяется их взаиморасположение. При статической работе тело и его части находятся в состоянии покоя. Мышцы при статической работе хотя и напряжены, но их длина не изменяется, они не укорачиваются. Такое сокращение мышц без изменения их длины называют изометрическим сокращением.

Кости скелета, соединенные суставами, при сокращении мышц действуют как рычаги. Выделяют рычаг первого рода и рычаг второго рода (рис. 31). У рычага первого рода точка приложения силы (мышечного сокращения) и точка сопротивления (тяжесть части тела, переносимый груз) находятся по разные стороны от точки опоры (оси сустава). При­мером может служить голова, кото­рая опирается на I шейный позво­нок – атлант (точка опоры). По одну сторону от атлантозатылочного сочленения действует сила тяжести лицевого черепа, по другую – сила действия затылочных мышц, при­крепляющихся к затылочной кости. Равновесие головы может быть при условии, если вращающий момент прилагаемой силы затылочных мышц (произведение силы, действующей на затылочную кость, на длину плеча, равного расстоянию от точки опоры до точки приложения силы) будет равен вращающему моменту силы тя­жести передней части головы (про­изведение силы тяжести на длину плеча, равного расстоянию от точки опоры до точки приложения силы тяжести).

Рычаг второго рода, у которого и точка приложения мышечной силы, и точка силы тяжести расположены по одну сторону от точки опоры, бывает двух видов. У первого вида рычага второго рода плечо прило­жения мышечной силы (место при­крепления ахиллова сухожилия к пяточной кости) длиннее плеча при­ложения (действия) силы тяжести (голеностопный сустав). У второго вида рычага второго рода плечо приложения мышечной силы (место прикрепления двуглавой мышцы пле­ча к лучевой кости) короче пле­ча действия силы тяжести (кисти). Для преодоления силы тяжести необходимо приложить значитель­ную мышечную работу. В то же время имеется выигрыш в размахе движения и скорости перемещения предплечья и кисти.

Силу мышц определяют по вели­чине того груза, который мышца при своем максимальном сокращении может поднять на определенную вы­соту. Такую силу принято называть подъемной силой мышцы. Сила раз­ных мышц неодинакова. Она зави­сит от числа мышечных волокон от площади поперечного сечения этих волокон. Сравнивая равновеликие веретенообразную мышцу с продоль­ным направлением длинных мышеч­ных волокон и перистую мышцу с косым направлением большего числа коротких мышечных волокон, мы установим, что перистая мышца сильнее. Показателем силы мышцы служит ее физиологический поперечник – площадь поперечного сечет всех ее мышечных волокон (рис. 32). Величину (размеры) мышцы характеризует ее анатомический поперечник, – поперечное сечение мышцы наиболее широкой ее части.

Вращающая сила мышцы зависит не только от ее физиологического поперечника и подъемной силы, но и от угла прикрепления мышцы к костям. Чем больше угол,покоторым мышца прикрепляется к кости, тем большее действие она может оказать на эту кость. Для увеличения угла прикрепления мышц к костям служат блоки.

Рис. 32. Схема анатомическо­го и физиологического попе­речников мышц различной формы: 1 – лентовидная мышца, 2 – веретенообразная мышца, 3 – одноперистая мышца (сплошной линией обозначен анатомический поперечник мышц, прерывистой – фи­зиологический поперечник)

Мышечный тонус. В покое каждая мышца человека находится в состоя­нии постоянного непроизвольного сокращения – тонуса, который под­держивается рефлекторно за счет по­ступающих в мышцу нервных им­пульсов. Это небольшое напряжение мышц тела необходимо для поддер­жания их стартового состояния, со­противления растяжению, готовности

к действию. Длительное, судорожное сокращение мышцы, продолжающееся, несмотря на прекращение раздра­жения, называют контрактурой.

Управление движением. Способ­ность животных, в том числе и че­ловека, передвигаться и выполнять различные действия под контролем нервной системы – одна из важнейших особенностей, отличающих жи­вотных от растений. Сокращение мышечных волокон происходит под влиянием импульсов, приходящих из головного и спинного мозга по нерв­ным волокнам (отросткам двигательных нейронов). Сокращаясь, мышцы обеспечивают движение. При этом они никогда не работают изолиро­ванно, в одиночку. Выполнение лю­бого движения достигается согласо­ванным действием групп мышц, как сгибателей, так и разгибателей. На­пример, вертикальное положение те­ла человека обеспечивают до 150 мышц.

В зависимости от направления усилий, развиваемых мышцами, их принято делить на синергисты и анта­гонисты. Мышцы, которые действуют на сустав в одном направлении (на­пример, сгибают кисть), получили название мышц-синергистов, мышцы противоположного действия явля­ются мышцами-антагонистами. При каждом движении сокращаются не только мышцы, совершающие его, но и их антагонисты, противодейст­вующие тяге и тем самым при­дающие движению точность и плав­ность. В каждой группе мышц мож­но выделить главные мышцы, вы­полняющие это движение, и вспо­могательные, которые уточняют, «мо­делируют» это движение, придают ему индивидуальные особенности.

Скелетные мышцы человека спо­собны сокращаться, подчиняясь его воле. Такие движения называют произвольными. Движения этого типа отличаются от рефлекторных (не­произвольных движений), которые выполняются помимо воли человека, например, если человек, неосторож­но коснувшись раскаленной плиты, отдергивает руку, еще не успев осо­знанно почувствовать боль. При про­извольных движениях нервные им­пульсы к скелетным мышцам посту­пают из двигательных центров коры большого мозга. Непроизвольные движения управляются из соответ­ствующих центров ствола головного и спинного мозга.

Мышечные волокна сокращаются только по приказу двигательных ней­ронов. Двигательный нейрон и его длинный отросток – аксон вместе с мышечными волокнами, которые он контролирует, называют двигатель­ной единицей.

Двигательные нейроны ствола го­ловного мозга и передних рогов спин­ного мозга контролируются нейрона­ми двигательной зоны коры полу­шарий большого мозга.

Источником активации нейронов двигательной зоны коры полушарий большого мозга является зрительная, слуховая, кожная, мышечная инфор­мация, поступающая в кору от ор­ганов чувств. На основе ее двига­тельная зона коры формирует осоз­нанный двигательный акт.

Утомлением называют временное понижение работоспособности клет­ки, органа или организма в целом, наступающее в результате работы и исчезающее после отдыха. Разви­тие утомления в двигательном аппа­рате при длительной или напря­женной работе зависит от несколь­ких факторов. Прежде всего, утом­ление связано с процессами, разви­вающимися в нервной системе, в нервных центрах, участвующих в уп­равлении двигательной деятель­ностью.

Ряд причин развития утомления связан с процессами, происходящи­ми в самой мышце. Это накопление в ней продуктов обмена (молочной кислоты и др.), оказывающих угне­тающее действие на работоспособ­ность мышечных волокон, и умень­шение в них энергетических запасов (гликогена).

Скорость развития утомления при мышечной работе зависит от двух показателей – от физической на­грузки и от ритма работы, т. е. от частоты мышечных сокращений. При увеличении нагрузки или при уча­щении ритма мышечных сокращений утомление наступает быстрее. Мы­шечная работа достигает максималь­ного уровня при средних нагрузках и средних скоростях сокращения мышц.

Физическое утомление – нор­мальное физиологическое явление. После отдыха работоспособность не только восстанавливается, но и часто превышает исходный уровень. Ра­ботоспособность быстрее восста­навливается при активном отдыхе. чем при полном покое. Впервые оте­чественный ученый-физиолог И. М. Се­ченов в 1903 г. показал, что вос­становление работоспособности утом­ленной мышцы правой руки проис­ходит быстрее, если в период отдыха производить работу левой рукой. В отличие от простого покоя такой от­дых был назван И. М. Сеченовы» активным. Им были заложены ос­новы гигиены труда, имеющие зна­чение для рациональной организа­ции трудовых процессов.

1. Какую работу называют динамической, какую – статической. Приведите примеры.

Дата добавления: 2015-10-01 ; просмотров: 3292 | Нарушение авторских прав

источник

Механизм мышечного сокращения и расслаблениязаключается в перемещении нитей актина относительно нитей миозина. Нити актина двигаются как по туннелю, между миозиновыми фибриллами, за счет чего волокно укорачивается. Такое сокращение, сопровождающееся изменением длины, называют изотоническим. Тип сокращения, который осуществляется при неизменной длине, называют изометрическим. Энергию для перемещения нитей дает АТФ.

Сила сокращения мышцзависит от количества нейромоторных единиц, участвующих в этом сокращении, от частоты раздражения, до известного предела. Максимальное напряжение, которое может развить мышца, определяется числом образующих ее волокон: чем оно больше, тем больше сила мышц. Поэтому перистые мышцы, в которых велико число волокон, отличаются большой силой. Проявление силы зависит от особенностей прикрепления мышцы к костям. Мышцы с большей площадью опоры имеют большие возможности для проявления силы.

Мышца, сокращаясь, производит работу. Величина ее равна произведению массы груза на поднятую высоту. Отсюда следует, что максимальная работа, выполняемая при одиночном сокращении мышцы, зависит от ее силы (чем больше сила, тем больший груз может быть поднят) и степени укорочения мышцы.

В процессе естественной деятельности человека величина работы, выполняемой той или иной мышцей, в значительной степени зависит от способности ее длительно находиться в сокращенном состоянии, т. е. от степени выносливости мышц. Различают выносливость к статическим и динамическим усилиям. Выносливость к статическим усилиям определяется временем, в течение которого удерживается величина заданного усилия. Она различна для различных мышц. Наименьшей выносливостью характеризуется трехглавая мышца плеча (1 мин при усилии, равном 50 % от максимального), наибольшей — икроножная мышца
(7 мин). Выносливость к динамической работе зависит как от величины поднимаемого груза, так и от темпа работы. Работа бывает наибольшей при какой-то средней величине груза и частоте движений. Выносливость к динамической и статической работе можно увеличивать путем тренировки. При длительной как динамической, так и статической работе наступает утомление мышц.

Работа мышц — необходимое условие их существования. Длительная бездеятельность мышц ведет к их атрофии и потере ими работоспособности. Тренировка, т. е. систематическая, нечрезмерная работа мышц, способствует увеличению их объема, возрастанию силы и работоспособности, что важно для физического развития всего организма.

Глава 7. ВОЗРАСТНАЯ АНАТОМИЯ
И ФИЗИОЛОГИЯ СИСТЕМЫ КРОВИ

Общая характеристика крови

Кровь вместе с кроветворными и кроверазрушающими органами составляет целостную систему крови, которая включает костный мозг, селезенку, тимус, лимфатические узлы, миндалины и отдельные лимфоидные фолликулы слизистых оболочек дыхательных, пищеварительных и мочеполовых путей. У взрослого человека общее количество крови составляет 5—8 % веса тела, что соответствует 5—6 л. Кровь имеет красный цвет и рН 7,35. Она является жидкой тканью и разновидностью соединительной ткани, находится в непрервывном движении, располагается в замкнутой системе кровеносных сосудов. Кровь вместе с лимфой и межтканевой жидкостью составляет внутреннюю среду организма, в которой протекает жизнедеятельность всех клеток и тканей. Особенностью крови является ее высокая способность к регенерации, которая происходит в специальных кроветворных органах и носит название кроветворения. Кровь выполняет следующие функции: транспортную, защитную, терморегуляторную. Транспортная функция заключается в переносе питательных веществ (глюкоза, аминокислоты, жиры и др.) к клеткам, а конечные продукты обмена веществ (аммиак, мочевину, мочевую кислоту и др.) — от них к органам выделения. Осуществляя перенос гормонов и других физиологически активных веществ, воздействующих на различные органы и ткани, она участвует в выполнении регуляторной функции. С функциями крови тесно связана регуляция постоянства температуры тела. Кровь переносит тепло от органов с интенсивным его образованием к органам с менее интенсивной теплопродукцией и к местам, где она охлаждается (поверхность кожи). Защитную функцию кровь выполняет благодаря способности лейкоцитов к фагоцитозу и наличию в ней иммунных тел, обезвреживающих микроорганизмы и их яды, разрушающих чужеродные белки. Доставляя кислород от легких к тканям, принося к легким углекислый газ, кровь осуществляет дыхательную функцию.

В кровеносных сосудах в состоянии покоя циркулирует не вся кровь. Около 40—50 % ее находится в кровяных депо (селезенке, печени, сосудах кожи и легких). Депонированная кровь в единице объема содержит больше форменных элементов по сравнению с кровью, циркулирующей в сосудах. Выход крови из депо в общий кровоток обусловливается многими факторами. Наиболее важным из них является дефицит кислорода в организме, возникающий под влиянием различных причин (мышечная деятельность, кровопотери, пониженное атмосферное давление и др.). Уменьшение количества крови более чем на 1/3 опасно для жизни. Потеря крови в небольших количествах (200—400 мл) для здоровых людей не только не представляет вреда, но даже стимулирует кроветворение.

Кровь состоит из форменных элементов (55—58 %) — эритроцитов, лейкоцитов и тромбоцитов (рис. 15), и жидкой части — плазмы (42—45 %).

Рис. 15. Форменные элементы крови

7.2. Строение, функции и классификация
форменных элементов крови

Эритроциты, или красные кровяные тельца, у человека представляют собой специализированные безъядерные клетки диаметром 7—8 мкм. Они образуются в красном костном мозге, разрушаются в печени и селезенке. В 1 мм 3 крови содержится в среднем 5 млн эритроцитов у мужчин и 4,5 у женщин. С возрастом количество эритроцитов уменьшается, у новорожденного в 1 мм 3 крови содержится 7,2 млн, к 5—6 месяцам жизни — 4—4,5 млн. В дальнейшем до периода полового созревания наблюдается постепенное увеличение их количества до нормы взрослого. Строение и состав эритроцитов обусловлены выполняемой ими функцией — транспорт газов. Форма эритроцитов в виде двояковогнутого диска увеличивает соприкосновение с окружающей средой, способствуя этим ускорению процессов газообмена. Суммарная поверхность всех эритроцитов в циркулирующей крови составляет около 3000 м 2 . Каждый эритроцит снаружи покрыт плазмолеммой, через которую избирательно проникают газы, вода и другие элементы.

Читайте также:  Профилактика зрительного утомления для учащихся

В начальных фазах своего развития эритроциты имеют ядро и называются ретикулоцитами. По мере созревания ядро и органойды разрушаются и замещается дыхательным пигментом — гемоглобином (Нв), составляющим 90 % сухого вещества эритроцитов. Гемоглобин состоит из белка глобина и железосодержащей части — гема. Гемоглобин обладает свойством легко соединяться с кислородом и легко его отдавать. Присоединяя кислород, он становится оксигемоглобином (НвО2) и имеет ярко-красный цвет. Отдавая кислород в местах с малым его содержанием, он соединяется с углекислым газом и называется карбогемоглобином. В легких углекислый газ покидает кровь и гемоглобин вновь насыщается кислородом. В крови взрослых людей находится 14—15 % гемоглобина. Общее его содержание равно примерно 700 г.

Количество эритроцитов и гемоглобина в крови может изменяться под влиянием факторов внешней среды (атмосферное давление, сезоны года, особенности климата и др.), физиологической перестройки организма в определенные периоды жизни, под влиянием систематическихзанятий спортом и т. д. Средняя продолжительность жизни зрелых эритроцитов составляет около 120 дней, после чего они разрушаются в печени и селезенке.

При отстаивании цельной крови, к которой прибавлены противосвертывающие вещества, происходит оседание эритроцитов. Это свойство названо скоростью оседания эритроцитов (СОЭ) и используется в медицинской практике для обнаружения заболеваний, т. к. при многих заболеваниях СОЭ бывает ускоренной. Нормальная СОЭ крови взрослого от 4 до 12 мм в час. При воспалительных процессах СОЭ бывает от 20 до 50.

Лейкоциты, или белые кровяные клетки, по морфологическим и функциональным признакам представляют собой обычные клетки, содержащие ядро, цитоплазму и все органойды. Лейкоциты имеют шаровидную форму и размеры от 6 до 25 мкм, обладают подвижностью и выполняют защитные функции. Лейкоциты способны выходить из кровеносных сосудов в ткани, где они выполняют свои защитные функции, и возвращаться обратно. Они образуются в костном мозге из стволовых клеток. В 1мм 3 крови человека находится 3,5—9 тыс. лейкоцитов. Количество лейкоцитов колеблется в течение суток, их число увеличивается после еды, при сильных эмоциях, во время физической работы и уменьшается в утренние часы.

Лейкоциты неоднородны, по строению цитоплазмы и ядра они подразделяются на зернистые (гранулоциты) и не зернистые (агранулоциты). Гранулоциты имеет дольчатое ядро и специфическую зернистость в цитоплазме и составляют 70—75 % всех лейкоцитов. По химическому составу гранул зернистые лейкоциты подразделяются на нейтрофилы (65—70 %), эозинофилы (1—5 %) и базофилы (0,5—1 %). Нейтрофилы имеют пылевидную зернистость, которая окрашивается в фиолетово-розовый цвет как кислыми, так и основными красителями, а ядро содержит более двух сегментов. Нейтрофилы по степени зрелости подразделяются на юные, палочкоядерные и сегментированные. Нейтрофилы являются микрофагами и обладают способностью к фагоцитозу. Эозинофилы имеют крупную ярко-розовую зернистость, окрашивающуюся кислыми красителями и двухдольчатое ядро. Эозинофилы участвуют в аллергических реакциях и обладают антитоксическим действием, поэтому количество их увеличивается при глистных инвазиях и аллергических заболеваниях. Базофилы содержат крупную немногочисленную темно-синюю зернистость, окрашивающуюся основными красителями, и имеют S-образное ядро. Базофилыучаствуют в свертывании крови. Агранулоциты не содержат в цитоплазме специфической зернистости, имеют шаровидное или бобовидное ядро и подразделяются на лимфоциты (25—30 %) и моноциты (4—8 %). Лимфоциты самые мелкие клетки крови, размером от 4 до 8 мкм, имеют круглое крупное ядро и тонкий ободок цитоплазмы. Основная функция лимфоцитов — иммунная защита. Моноциты — самые крупные клетки крови диаметром
18—20 мкм, имеют бобовидное ядро. Моноциты обладают способностью к фагоцитозу, поэтому их называют макрофагами. Процентное соотношение различных форм лейкоцитов в крови называется лейкоцитарной формулой.

Количество лейкоцитов и лейкоцитарная формула не всегдаостаются постоянными. Увеличение числа лейкоцитов называется лейкоцитозом, уменьшение — лейкопенией. В возникновении количественных изменений лейкоцитов имеют значение нарушение соотношений между скоростью их продукции и темпом разрушения, а также перераспределение крови в организме, обусловленное изменением тонуса сосудов, скоростью кровотока в отдельных органах и выходом крови из депо. Продолжительность жизни лейкоцитов составляет от нескольких часов до нескольких дней.

Тромбоциты, или кровяные пластинки, — это цитоплазматические образования овальной, круглой или неправильной формы диаметром 2—5 мкм в количестве 200—400 тысяч в 1 мм 3 . В крови человека и млекопитающих они не имеют ядра. Тромбоциты образуются в костном мозге из гигантских клеток-мегакариоцитов и представляют собой обрывки цитоплазмы. Они играют важную роль в процессе свертывания крови. Продолжительность жизни тромбоцитов составляет 5—8 дней.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

источник

Время – 2 часа

Мотивационно-воспитательная характеристика темы:В практической деятельности врача, особенно в спортивной медицине возникает необходимость определения силы и работы мышц. Знание факторов, влияющих на силу и работоспособность мышцы позволяет объективно оценить функциональное состояние мышцы и выбрать правильный режим тренировок.

Учебная цель:Изучить факторы, определяющие силу и работу мышц, познакомиться с методами оценки мышечной силы. Уяснить механизмы, способствующие развитию утомления мышц и возможные механизмы снятия утомления

Содержание занятия

Этапы занятия Цель данного этапа Время
1. Вводный контроль Проверка исходного уровня знаний с помощью тестового контроля 10 мин.
2. Опрос-беседа Разбор темы по предложенным вопросам с коррекцией исходного уровня 25 мин.
3. Самостоятельная работа студентов с консультациями преподавателя Закрепление теоретических знаний при выполнении практических заданий, анализ полученных результатов, формулировка выводов, оформление протоколов практических работ 45 мин.
4 Завершающий этап Оценка знаний и умений при решении ситуационных задач и проверке протоколов 10 мин.

Вопросы для самоподготовки

1 Режимы мышечных сокращений.

.2 Сила мышц. Факторы, влияющие на силу мышц. Методы измерения мышечной силы.

3 Работа мышц. Виды работы.

4. Утомление мышц, местные и центральные механизмы утомления. Признаки утомления мышц

5. Понятие об активном отдыхе.

6 Особенности функционирования гладких мышц.

Домашнее задание

  1. Зарисовать кривую мышечного сокращения в норме и при утомлении мышцы
  2. Перечислить особенности функционирования гладкой мышцы.
  3. Зарисовать кривую потенциала действия гладкой мышцы

Самостоятельная работа на занятии:

Задание Объект Программа действия Ориентировочные основные действия
1.Определение силы мышц при помощи пружинного динамометра, оценка динамометрического индекса. Человек 1Поставить стрелку пружинного динамометра на «0». 2 В положении сидя отвести руку с динамометром в сторону под прямым углом к туловищу. Дважды выполнить максимальное усилие на динамометре, силу мышц оценить по лучшему результату . 3Определив силу мышц ведущей руки и зная массу тела, рассчитывают динамометрический индекс(ДИ) по формуле: ДИ=Р/М, где Р – показатель мышечной силы, М – масса тела Стрелка указывает на силу, с которой была сжата ручка динамометра. Отметить факторы , влияющие на силу мышц. Динамометрический индекс отражает силовую характеристику двигательного аппарата, зависит от использования мышц и здоровья в целом. Оценить данный показатель. сравнив с нормой: для мужчин- более 0,8 (отлично); 0,7-0,8 (хорошо); 0,60-0,69 (удовлетворительно); менее 0,6 (плохо); для женщин— более 0,6 (отлично);0,56-0,60(хорошо); 0,40-0,55 (удовлетворительно); менее 0,4 (плохо)
2. Определение уровня работоспособности и показателя снижения работоспособности мышц. человек Выполнить 10-кратные усилия на динамометре с частотой один раз в 5 секунд. Результаты записать и определить уровень работоспособности мышц по формуле: Р=(f1+f2+f3+. fn)/n, где Р – уровень работоспособности ; f1,f2,f3,…fn- показатели динамометра при отдельных мышечных усилиях; n- число попыток. Эти результаты использовать для расчёта показателя снижения работоспособности мышц по формуле: S =[(f1-fmin)/fmax] 100, где S-показатель снижения работоспособности, f1-величина начального мышечного усилия; fmin- минимальная величина усилия; fmax-максимальная величина усилия Сравнив результаты у разных испытуемых. сделать вывод о факторах, влияющих на работоспособность и причинах утомления мышц.
3. Изучение возможных механизмов снятия утомления. Человек Опыты на двух группах: Первая группа. На ручном динамометре правой рукой определяют силу (10 раз). Этот опыт повторяют на другой руке. После этого вновь определяют силу правой руки. Вторая группа. Определяют силу сокращения на правой руке. В течение 3-4 минут ничего не делают. Повторяют опыт на правой руке. Полученные данные обеих групп усреднить. Сопоставить. Сделать вывод. При анализе полученных результатов обратить внимание, чем отличаются кривые, полученные в опытах (после работы левой рукой или пассивного отдыха).
4. Влияние умственной нагрузки на снятие утомления. Человек Приседать до полного утомления. Сосчитать количество приседаний. В перерыве одна часть студентов ходит, другая – занимается умственной работой (чтение учебника). После отдыха вновь приседают до утомления, считая количество приседаний. Сравнить количество приседаний до и после отдыха в каждой группе студентов.. Отметить, какая группа после перерыва будет работоспособней.

Вопросы для самоконтроля

1.Какие факторы влияют на силу сокращения мышцы?

2.Совершается ли физическая работа при удержании груза на месте?

3. Какие местные факторы способствуют развитию утомления мышц?

. 4 В чём заключаются центральные механизмы утомления мышц?

5 Какое утомление развивается быстрее: центральное или местное?

6 По каким признакам можно определить утомление мышцы?

7 Какие структурные особенности гладкой мышцы обеспечивают её тонические сокращения?

8 Обладает ли гладкая мышца автоматией?

9 Какие ионы играют ведущую роль в формировании потенциала действия гладкой мышцы?

10 Чем отличается потенциал действия гладкой мышцы от скелетной?

Тестовый контроль:

1. Что понимается под пессимумом частоты и силы раздражения? 1) частота выше оптимальной; 2) самые низкие частоты.

2. Какие основные черты сокращения гладкой мышцы? 1) замедленная реакция; 2) пластичность тонуса; 3) низкая возбудимость; 4) быстрая утомляемость; 5) способность сокращаться отдельными участками.

3. Что понимается под нейро-моторной единицей? 1) одна миофибрилла, иннервируемая одним нейроном; 2) один нейрон с иннервируемыми миофибриллами.

4. Какая будет возбудимость мышцы в скрытый период одиночного мышечного сокращения? 1) высокая; 2) без существенных изменений; 3) отсутствует.

5. Какой тетанус у человека в норме? 1) гладкий; 2) зубчатый.

6. Какой белок имеет поперечные мостики? 1) актин; 2) миозин.

7. Характерна ли для деятельности скелетной мышцы суммация сокращений? 1) да; 2) нет.

8. Может ли сердечная мышца сокращаться в режиме гладкого тетануса? 1-да; 2-нет

Ответы: 1-1; 2- 1,2,3,5.; 3-2; 4-3; 5-1; 6-2; 7-1; 8-2.

Ситуационные задачи:

1. Денервированная гладкая и поперечно-полосатая мышцы функционируют различно. Как объяснить явление?

2. Как определить изменения возбудимости изолированной мышцы в ходе её утомления, которое вызывают повторными ударами электрического тока?

3. Чем можно объяснить большую силу мышц туловища по сравнению с мышцами плечевого пояса?

4. Одна группа мышц удерживает груз на месте больший, чем другая группа мышц. Какая из групп мышц совершает большую работу?

5. У доярки после непрерывной работы в течение 2-х часов мышцы кистей рук не смогли расслабиться, фаланги пальцев находились в состоянии тонического сокращения. Как называется это явление? Чем оно вызвано?

1. Функция поперечно-полосатой мышцы полностью зависит от нервных влияний. При удалении нерва наступает паралич мышцы, проявляющийся в её обездвиженности, нарушении трофики. Денервированная гладкая мускулатура продолжает функционировать, так как она обладает автоматией.

2. Записав кривую сокращения мышцы, можно наблюдать уменьшение её амплитуды, что объясняется развитием утомления. Для решения задачи необходимо сопоставить величину возбудимости с той или иной стадией утомления. Мерой возбудимости является порог раздражения. Чтобы определить, как изменяется возбудимость мышцы, нужно измерить порог раздражения по мере развития утомления в паузах между сокращениями. По мере развития утомления возбудимость снижается, а порог раздражения повышается.

3. Сила мышцы зависит от физиологического поперечного сечения мышцы, являющегося суммой поперечных сечений входящих в неё миофибрилл, на эту величину влияет строение мышцы, т.е. расположение миофибрилл. Наиболее сильными являются мышцы с косым и перистым расположением миофибрилл, какими и являются мышцы туловища (межреберные, мышцы спины и др.)по сравнению с мышцами с продольным расположением миофибрилл (двуглавая мышца плеча).

4. В данном случае ни одна из групп мышц физической работы не совершает, так как при удержании груза на месте длина мышцы не меняется (изометрическое сокращение), а работа мышцы- это произведение груза на величину её укорочения.

5. Это явление называется контрактурой мышц. В данном случае в результате непрерывной работы истощаются запасы энергии АТФ в мышечных волокнах, необходимой для работы кальциевого насоса в период расслабления мышц.

1. Физиология человека. Учебник. /Под ред. В.М.Покровского, Г.Ф.Коротько.- М.: Медицина, 2003, с.74-93

2. Физиология человека. / Под ред. Н.А. Агаджаняна, В.И.Циркина.- СПб: СОТИС, 1998, 2000, 2002, с .22-27.

Читайте также:  Физминутки для снятия общего утомления

3. Физиология человека..Учебник. /Под ред. В.М.Смирнова. М.:Медицина, 2002, с.82-92

4. Руководство к практическим занятиям по нормальной физиологии /Под ред.С.М.Будылиной, В.М.Смирнова- М: Издательский центр «Академия», 2005, с.23-38

5. Руководство к практическим занятиям по физиологии / Под ред. Г.И.Косицкого и В.А Полянцева.- М.: Медицина, 1988, с.86-90.

1 Основы физиологии человека. /Под ред. Б.И.Ткаченко.- СПб,1994, т.1, с. 146 – 165.

.2 Физиология человека. /Под ред. Г.И.Косицкого.- М.: Медицина, 1985, с. . 41 — 44, 56 – 60, 65 – 71.

3 Физиология человека. /Под ред. Р.Шмидта, Г.Тевса,- М.: Мир, 1996, т.1, с.26 — 40, 83 – -87

4 Руководство к практическим занятиям по физиологии / Под ред. К.В.Судакова- М, 2002, с. 36-38, 73-84.

5 Основы физиологии человека / Под ред. Н.А.Агаджаняна- М: изд-во РУДН, 2001, с.29-35

6 Орлов Р.С., Ноздрачев А.Д. Нормальная физиология. Учебник- ГЭОТАР-Медиа,2005,с.94-116

7 Избранные вопросы клинической психологии / Под ред. Ю.В.Каминского. Т.1.: Нормальная анатомия, физиология и патология нервной системы.- Владивосток, Медицина ДВ,2006, с.248-252

Краткое теоретическое содержание темы:

В результате деятельности мышца развивает определенную силу и совершает работу. Сила мышцы определяется максимальным грузом, который она в состоянии поднять, или максимальным напряжением, которое она может развить при изометрическом сокращении. Сила мышцы зависит от физиологического поперечного сечения — это сумма поперечных сечений всех её волокон, которое в свою очередь зависит от расположения волокон в мышце (продольное, косое, перистое) и от толщины волокон, т.е. от содержания в них сократительных белков. При ауксотоническом сокращении мышца совершает физическую работу, которая равна произведению веса поднятого груза на величину укорочения мышцы ( при изотоническом и изометрическом режиме физической работы не совершается, так как один из множителей равен нулю). Наибольшую работу мышца совершает при средних нагрузках (правило средних нагрузок). В результате длительной работы наступает утомление мышцы – временное понижение работоспособности, исчезающее после отдыха. Признаками мышечного утомления являются снижение амплитуды сокращения (до полного исчезновения), увеличение латентного периода сокращения, удлинение периода расслабления (возможно наступления контрактуры мышцы). Механизмы утомления мышцы можно подразделить на 2 категории:

1- местные причины, связанные в основном с двумя факторами: а) накоплением продуктов обмена и ионов калия в межклеточном веществе, что угнетает способность мембраны генерировать потенциал действия; б) истощением энергетических запасов , связанных со снижением ресинтеза АТФ в результате уменьшения запасов гликогена, креатинфосфата , недостатка кислорода и т.д.

2- центральные механизмы, связанные с утомлением нервных центров, регулирующих сокращение тех или иных мышц. Утомление нервных центров наступает в результате утомления синапсов. В целостном организме быстрее наступает утомление нервных центров, чем самой мышцы. Утомление центрального происхождения легче снять, чем утомление , связанное с местными факторами. Для этого достаточно переключить деятельность на другую группу мышц ( или на другой вид работы), а следовательно, на другие нервные центры. Другими словами, надо создать новый доминантный очаг возбуждения, который затормозит раннее работающие центры и создаст условия для более быстрого их восстановления. На основе этих механизмов И.М.Сеченов выдвинул идею активного отдыха.

Сила сокращения мышц, их работоспособность и выносливость зависит от взаимодействия и соотношения в них различных двигательных единиц. Различают медленные двигательные единицы, характеризующиеся высокой возбудимостью и низкой утомляемостью, они обусловливают тонические сокращения. Скорость сокращения и сила таких мышц невысокие, они способны к длительному сокращению, достаточно выносливые и могут длительно выполнять работу. Такие мышцы богаты капиллярами, содержат большое количество миоглобина, их называют «красными мышцами». Быстрые или большие двигательные единицы характеризуются высокой скоростью, большой силой сокращения, но быстрой утомляемостью. Они образуют «белые мышцы» и обеспечивают фазные движения. В любой мышце есть и те, и другие двигательные единицы, но их соотношения различны; поэтому есть мышцы, выполняющие преимущественно тонические функции («красные мышцы»), и преимущественно фазные движения («белые мышцы»).

6.3.Особенности функционирования гладкой и сердечной мышцы.

Механизм сокращения любой мышечной ткани принципиально сходен и связан с образованием актомиозинового комплекса. Однако в связи с различным происхождением, строением, степенью дифференцировки имеется ряд отличий в функционировании различных видов мышечной ткани. Более примитивной и малодифференцированной является гладкомышечная ткань, выстилающая стенки сосудов, полых внутренних органов. Несмотря на клеточное строение, её можно отнести к функциональному синцитию: контакты между клетками очень плотные («нексусы») с низким сопротивлением, что способствует беспрепятственному распространению возбуждения с одной группы клеток на другую. Поэтому для гладких мышц характерны медленные длительные тонические сокращения, что необходимо для поддержания тонуса сосудов, органов желудочно-кишечного тракта и др. Кроме того, гладкие мышцы обладают пластичностью –способностью сохранять приданную растяжением длину без изменения напряжения, что имеет важное значение для полых органов. В отличие от скелетных мышц, сокращение которых инициируются сигналами из ЦНС, гладкие мышцы способны к автоматии, т.е. к самовозбуждению, что обусловлено отсутствием стабильного потенциала покоя и наличием медленной деполяризации мембраны, достигающей критического уровня самопроизвольно. Возникнув в одной группе клеток, возбуждение распространяется через «нексусы» (выполняющих роль электрических синапсов) на другие участки, поддерживая тем самым тоническое сокращение (медленное сокращение и расслабление при малых затратах энергии). В формировании потенциала действия гладких мышц принимают участие не быстрые натриевые каналы ( для гладких мышц не характерен «пик» потенциала действия), а медленные натрий-кальциевые каналы, приводяшие к малой крутизне ПД. Кальций, поступающий в мышечное волокно при возбуждении, играет ведущую роль в осуществлении связи между возбуждением и сокращением (электромеханическом сопряжении). Помимо способности к автоматии, которой обладает определенная группа миоцитов – «пейсмеккеров», гладкие мышцы способны возбуждаться при растяжении ( в этом заключается миогенный механизм поддержания тонуса гладких мышц) и под действием медиаторов вегетативной нервной системы.

Сердечная мышца занимает промежуточное положение между примитивной гладкой и высокоспециализированной скелетной мышцей и состоит из атипичных миоцитов ( более примитивные клетки, которые,подобно гладким миоцитам, способны к автоматии, имеют нестабильный потенциал покоя и выраженную медленную диастолическую деполяризацию мембраны, самопроизвольно достигающую критического уровня, малую крутизну подъёма ПД) и типичных кардиомиоцитов, выполняющих основную сократительную функцию ( и в этом их сходство со скелетными мышцами). Атипичные миоциты образуют проводящую систему сердца с главным водителем ритма – синоатриальным узлом, а типичные миоциты формируют рабочий (сократительный ) миокард. Миокард представляет собой «функциональный синцитий», характеризующийся наличием плотных контактов между клетками («нексусы» или электрические синапсы), благодаря которым возбуждение, возникшее в водителе ритма, распространяется и охватывает весь миокард. Поэтому сокращение сердечной мышцы подчиняется закону «всё или ничего» — в каждом сокращении сердца участвуют все кардиомиоциты. В отличие от атипичных миоцитов, типичные кардиомиоциты не могут возбуждаться самопроизвольно, так как их исходный потенциал (-90 мв) не может самостоятельно достичь критического уровня деполяризации (-50мв). Рабочий миокард получает возбуждение от проводящей системы сердца. В формировании ПД типичных кардиомиоцитов можно выделить несколько фаз: 1- быстрая деполяризация и пик имеет то же происхождение, что и у скелетных мышц и связана с открытием быстрых натриевых каналов и проникновением натрия внутрь клетки. Во время пика быстрые натриевые каналы блокируются и открываются медленные натрий-кальциевые каналы, что приводит к другой фазе; 2 – медленная реполяризация или фаза плато соответствует нулевому потенциалу и связана с проникновением в клетку ионов кальция. Поскольку в это время быстрые натриевые каналы блокированы, эта фаза сопровождается абсолютной рефрактерностью мембраны кардиомиоцитов; 3 – быстрая реполяризация связана с выходом калия из клетки и постепенным восстановлением возбудимости ( относительная рефрактерность). Главное отличие ПД сердечной мышцы от скелетной – наличие фазы плато, которая обеспечивает поступление ионов кальция, необходимого для запуска сокращения , из межклеточного вещества в процессе возбуждения, создавая условия для следующего сокращения. Длительность ПД сердечной мышцы превышает в 100 раз ПД скелетной мышцы и по времени совпадает с периодом сокращения сердца (систолой). Таким образом, сокращение сердечной, как и скелетной мышцы запускается возбуждением (ПД). Но имеется ряд отличий:

1 – в скелетной мышце сокращение начинается тогда, когда возбуждение почти закончилось, т.е. возбуждение опережает сокращение; в миокарде возбуждение и сокращение перекрываются во времени. ПД в миокарде заканчивается после начала фазы расслабления.

2-миокард не может впадать в состояние гладкого тетануса, так как во время сокращения (систолы), совпадающей с фазой плато ПД, кардиомиоциты абсолютно рефрактерны (невозбудимы). Данное обстоятельство имеет важное значение для нагнетательной функции сердца. Сердечная мышца – единственная в нашем организме, работающая в режиме одиночного мышечного сокращения, включающего фазу систолы(сокращения), во время которой кровь изгоняется из желудочков в сосуды большого и малого кругов кровообращения и диастолы (расслабления), когда желудочки наполняются кровью.

источник

Химизм мышечного сокращения

Теория мышечного сокращения

Сокращение — это изменение механического состояния миофибриллярного аппарата мышечных волокон под влиянием нервных импульсов.

Современная теория мышечного сокращения получила название теории скользящих нитей. Согласно этой теории “скольжения” в основе сокращения лежит взаимодействие между актиновыми и миозиновыми нитями миофибрилл вследствие образования поперечных мостиков между ними.

Во время скольжения сами актиновые и миозиновые нити не укорачиваются, но длина саркомера изменяется. В расслабленной, а тем более растянутой мышце активные нити располагаются дальше от центра саркомера, и длина саркомера больше. При изотоническом сокращении мышцы актиновые нити скользят по направлению к центру саркомера вдоль миозиновых нитей. Суммарное укорочение всех саркомеров вызывает укорочение миофибрилл, и мышца сокращается.

Непосредственным прямым источником свободной химической энергии для сокращения мышц является АТФ, которая подвергается гидролитическому расщеплению до АДФ и неорганического фосфата во время сокращения мышцы. Ресинтез АТФ происходит в результате расщепления креатинфосфата на креатин и фосфорную кислоту. Креатинфосфата в мышцах содержится больше, чем АТФ (около 30 ммоль/л). При интенсивной мышечной работе запасы креатинфосфата так же быстро истощаются, и в этих условиях ресинтез АТФ может осуществляться только за счет реакции гликолиза и тканевого дыхания.

При интенсивной мышечной нагрузке большой расход АТФ не покрывается доставкой обычных субстратов и кислорода кровью. В этих условиях энергетическим субстратом становится резервный полисахарид мышц — гликоген.

В аэробных условиях часть молочной кислоты окисляется в цикле Кребса до СО2 и Н2О при одновременном образовании АТФ. Большая же часть молочной кислоты в процессе гликогенеза снова превращается в гликоген.

Когда органы дыхания и кровообращения не могут полностью обеспечить мышцы необходимым количеством кислорода, возникает кислородная задолженность.

Теплообразование при мышечной работе

При мышечном сокращении выделяется энергия. 30 % — механическая и 70 % — тепловая (из них 40 % образуется при сокращении мышц, а 60 % — при расслаблении).

Основными показателями, характеризующими деятельность мышц, являются их сила и работоспособность.

Сила мышц. Сила — мера механического воздействия на мышцу со стороны других тел, которая выражается в ньютонах или кг-силах. При изотоническом сокращении в эксперименте сила определяется массой максимального груза, который мышца может поднять (динамическая сила), при изометрическом — максимальным напряжением, которое она может развить (статическая сила).

Изометрически сокращающаяся мышца развивает максимально возможное для нее напряжение в результате активации всех мышечных волокон. Такое напряжение мышцы называют максимальной силой. Максимальная сила мышцы зависит от числа мышечных волокон, составляющих мышцу, и их толщины. Они формируют анатомический поперечник мышцы, который определяется как площадь поперечного разреза мышцы, проведенного перпендикулярно ее длине. Отношение максимальной силы мышцы к ее анатомическому поперечнику называется относительной силой мышцы, измеряемой в кг/см 2 .

Сравнительным показателем силы разных мышц является абсолютная мышечная сила — отношение максимальной силы мышцы к ее физиологическому поперечнику, т.е. максимальный груз, который поднимает мышца, деленный на суммарную площадь всех мышечных волокон.

При изометрическом и изотоническом сокращении мышца совершает работу.

Оценивая деятельность мышц, обычно учитывают только производимую ими внешнюю работу.

Работа мышцы, при которой происходит перемещение груза и костей в суставах называется динамической.

Работа (W) может быть определена как произведение массы груза (Р) на высоту подъема (h)

Установлено, что величина работы зависит от величины нагрузки. Зависимость работы от величины нагрузки выражается законом средних нагрузок: наибольшая работа производится мышцей при умеренных (средних) нагрузках.

Максимальная работа мышцами выполняется и при среднем ритме сокращения (закон средних скоростей).

Утомление мышц. Утомление — временное снижение или потеря работоспособности отдельной клетки, ткани, органа или организма в целом, наступающее после нагрузок (деятельности). Утомление мышц происходит при их длительном сокращении (работе) и имеет определенное биологическое значение, сигнализируя об истощении (частичном) энергетических ресурсов.

При утомлении понижаются функциональные свойства мышцы: возбудимость, лабильность и сократимость.

Дата добавления: 2015-05-26 ; Просмотров: 3319 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Различают следующие режимы мышечного сокращения:

1. Изотонические сокращения. Длина мышцы уменьшается, а тонус не изменяется. В двигательных функциях организма не участвуют.

2. Изометрическое сокращения. Длина мышцы не изменяется, но тонус возрастает. Лежат в основе статической работы, например при поддержании позы тела.

Читайте также:  Вывод о утомлении мышц при статистической работе

3. Ауксотонические сокращения. Изменяются и длина, и тонус мышцы. С помощью их происходит передвижение тела и другие двигательные акты.

Максимальная сила мышц – это величина максимального напряжения, которое может развить мышца. Она зависит от строения мышцы, ее функционального состояния, исходной длины, а также пола, возраста, степени тренированности человека.

В зависимости от строения, выделяют мышцы с параллельными волокнами (например портняжная), веретенообразные (двуглавая мышца плеча), перистые (икроножная). У этих типов мышц различная площадь поперечного физиологического сечения – это сумма площадей поперечного сечения всех мышечных волокон, образующих мышцу. Наибольшая площадь поперечного физиологического сечения, а, следовательно, и сила, у перистых мышц. Наименьшая у мышц с параллельным расположением волокон.

При умеренном растяжение мышцы сила ее сокращения возрастает, но при перерастяжении уменьшается. При умеренном нагревании сила также увеличивается, а при охлаждении снижается. Сила мышц снижается при утомлении, нарушениях метаболизма и т.д. Максимальная сила различных мышечных групп определяется динамометрами (кистевым, становым и т.д.).

Для сравнения силы различных мышц определяют их удельную или абсолютную силу. Она равна максимальной силе, деленной на кв. см. площади поперечного сечения мышцы. Удельная сила икроножной мышцы человека составляет 62 кг/см 2 , трехглавой – 16,8 кг/см 2 , жевательных – 10 кг/см 2 .

Работу мышц делят на динамическую и статическую Динамическая выполняется при перемещении груза. При динамической работе изменяется длина мышцы и ее напряжение. Следовательно мышца работает в ауксотоническом режиме. При статической работе перемещения груза не происходит, т.е. мышца работает в изометрическом режиме.

Динамическая работа равна произведению веса груза на высоту его подъема или величину укорочения мышцы (А=М·h). Работа измеряется в кг·м, джоулях. Зависимость величины работы от нагрузки подчиняется закону средних нагрузок. При увеличении нагрузки работа мышц первоначально растет. При средних нагрузках она становится максимальной. Если увеличение нагрузки продолжается, то работа снижается. Такое же влияние на величину работы оказывает ее ритм. Максимальная работа мышцы осуществляется при среднем ритме. Особое значение в расчете величины рабочей нагрузки имеет определение мощности мышцы — это работа выполняемая в единицу времени (Р=А·Т). Единица измерения – ватт (Вт).

Утомление – это временное снижение работоспособности мышц в результате работы. Утомление изолированной мышцы можно вызвать ее ритмическим раздражением. В результате этого сила сокращений прогрессирующе уменьшается. Чем выше частота, сила раздражения и величина нагрузки, тем быстрее развивается утомление. При утомлении значительно изменяется кривая одиночного сокращения. Увеличивается продолжительность латентного периода, периода укорочения и особенно периода расслабления, но снижается амплитуда. Чем сильнее утомление мышцы, тем больше продолжительность этих периодов. В некоторых случаях полного расслабления не наступает. Развивается контрактура – это состояние длительного, непроизвольного сокращения мышцы.

Работа и утомление мышц исследуются с помощью эргографии. В прошлом веке, на основании опытов с изолированными мышцами, было предложено 3 теории мышечного утомления.

1. Теория Шиффа: утомление является следствием истощения энергетических запасов в мышце.

2. Теория Пфлюгера: утомление обусловлено накоплением в мышце продуктов обмена.

3. Теория Ферворна: утомление объясняется недостатком кислорода в мышце.

Действительно, эти факторы способствуют утомлению в экспериментах на изолированных мышцах. В них нарушается ресинтез АТФ, накапливается молочная и пировиноградная кислоты, недостаточно содержание кислорода. Однако в организме интенсивно работающие мышцы получают необходимый кислород, питательные вещества, освобождаются от метаболитов за счет усиления общего и регионального кровообращения. Поэтому были предложены другие теории утомления. В частности, определенную роль в утомлении принадлежит нервно-мышечным синапсам. Утомление в синапсе развивается из-за истощения запасов нейромедиатора. Однако главная роль, в утомлении двигательного аппарата принадлежит моторным центрам ЦНС. В прошлом веке И.М. Сеченов установил, что если наступает утомление мышц одной руки, то их работоспособность восстанавливается быстрее при работе другой рукой или ногами. Он считал, что это связано с переключением процессов возбуждения с одних двигательных центров на другие. Отдых с включением других мышечных групп он назвал активным.

В настоящее время установлено, что двигательное утомление связано с торможением соответствующих нервных центров, в результате метаболических процессов в нейронах, ухудшением синтеза нейромедиаторов, и угнетением синаптической передачи.

источник

Утомление – это временное снижение работоспособности, вызванное глубокими биохимическими, функциональными, структурными сдвигами, возникающими в ходе выполнения физической работы, которое проявляется в субъективном ощущении усталости. В состоянии утомления человек не способен поддерживать требуемый уровень интенсивности и (или) качества (техники выполнения) работы или вынужден отказаться от ее продолжения.

С биологической точки зрения утомление – это защитная реакция, предупреждающая нарастание физиологических изменений в организме, которые могут стать опасными для здоровья или жизни.

Механизмы развития утомления многообразны и зависят в первую очередь от характера выполняемой работы, ее интенсивности и продолжительности, а также от уровня подготовленности спортсмена. Но в каждом конкретном случае могут выделяться ведущие механизмы утомления, приводящие к снижению работоспособности.

При выполнении разных упражнений причины утомления неодинаковы. Рассмотрение основных причин утомления связано с двумя основными понятиями:

  1. Локализация утомления, т. е. выделение той ведущей системы (или систем), функциональные изменения в которой и определяют наступление состояния утомления.
  2. Механизмы утомления, т. е. те конкретные изменения в деятельности ведущих функциональных систем, которые обусловливают развитие утомления.
  1. регулирующие системы — центральная нервная система, вегетативная нервная система и гормонально-гуморальная система;
  2. система вегетативного обеспечения мышечной деятельности — системы дыхания, крови и кровообращения, образование энергетических субстратов в печени;
  3. исполнительная система — двигательный (периферический нервно-мышечный) аппарат.
  • Развитие охранительного запредельного) торможения;
  • Нарушение функции вегетативных и регуляторных систем;
  • Исчерпание энергетических резервов и потеря жидкости;
  • Образование и накопление в организме лактата;
  • Микроповреждения мышц.

При возникновении в организме во время мышечной работы биохимических и функциональных сдвигов с различных рецепторов (хеморецепторов, осморецепторов, проприорецепторов и др.) в ЦНС по афферентным (чувствительным) нервам поступают соответствующие сигналы. При достижении значительной глубины этих сдвигов в головном мозге формируется охранительное торможение, распространяющееся на двигательные центры, иннервирующие скелетные мышцы. В результате в мотонейронах уменьшается выработка двигательных импульсов, что в итоге приводит к снижению физической работоспособности.

Субъективно охранительное торможение воспринимается как чувство усталости. Усталость снижается за счет эмоций, действия кофеина или природных адаптогенов. При действии седативных средств, в том числе препаратов брома охранительное торможение возникает раньше, что приводит к ограничению работоспособности.

Утомление может быть связано с изменениями в деятельности вегетативной нервной системы и желез внутренней секреции. Роль, последних особенно велика при длительных упражнениях (А. А. Виру). Изменения в деятельности этих систем могут вести к нарушениям в регуляции вегетативных функций, энергетического обеспечения мышечной деятельности и т. д.

При выполнении особенно продолжительной физической работы, возможно снижение функции надпочечников. В результате уменьшается выделение в кровь таких гормонов как адреналина, кортикостероидов, вызавающих в организме сдвиги благоприятные для функционирования мышц.

Причиной развития утомления могут служить многие изменения, в деятельности, прежде всего дыхательной и сердечно-сосудистой систем , отвечающих за доставку кислорода и энергетических субстратов к работающим мышцам, а также за удаление из них продуктов обмена. Главное следствие таких изменений — снижение кислородтранспортных возможностей организма работающего человека.

Снижение функциональной активности печени также способствует развитию утомления, поскольку во время мышечной работы в печени протекают такие важные процессы как гликогенез, бета–окисление жирных кислот, кетогенез, глюконеогенез, которые направлены на обеспечение мышц важнейшими источниками энергии: глюкозой и кетоновыми телами. Поэтому для спортивной практики используют гепатопротекторы для улучшение обменных процессов в печени.

Признаки Небольшое физическое утомление Значительное утомление (острое переутомление I степени) Резкое переутомление (острое переутомление II степени)
Дыхание Учащенное (до 22-26/мин на равнине и до 3-6/мин на подъеме) Учащенное (38-46/мин), поверхностное Резкое (более 50-60/мин), учащенное, через рот, пере­ходящее в отдельные вдохи, сменяющееся беспорядоч­ным дыханием
Движение Бодрая походка Неуверенный шаг, легкое покачива­ние, отставание на марше Резкие покачивания, появ­ление некоординированных движений, отказ от дальней­шего движения
Общий вид, ощущения Обычный Усталое выражение лица, нарушение осанки (сутулость, опущенные плечи), снижение интереса к окружающему Изможденное выражение лица, резкое нарушение осанки («вот-вот упадет»), апатия, жалобы на резкую слабость (до прострации), сильное сердцебиение, головная боль, жжение в груди, тошнота, рвота
Мимика Спокойная Напряженная Искаженная
Внимание Хорошее, безошибочное выполнение указаний Неточное вы­полнение команд, ошибки при пере­мене направления Замедленное, неправильное выполнение команд; воспринимается только громкая команда
Пульс 110—150 уд/мин 160—180 уд/мин 180-200 уд/мин и более

Как известно, выполнение физической работы сопровождается большими энергозатратами, и поэтому при мышечной деятельности происходит быстрое исчерпание энергетических субстратов . Под этим понимается та часть углеводов, жиров и аминокислот, которая может служить источником энергии при выполнении мышечной работы. Такими источиками энергии считается мышечный креатинфосфат , который может полностью использован при интенсивной мышечной работе, большая часть мышечного и печеночного гликогена , часть запасов жира , находящаяся в жировых депо, а также аминокислоты, которые начинают окисляться при очень продолжительных нагрузках. Энергетическим резервом можно считать поддержание в крови во время физической работы необходимого уровня глюкозы.

Рис. 3. Схема изменения содержания глюкозы в крови и гликогена в печени и скелетных мышцах во время длительной работы

Исчерпание энергетических субстратов, ведет к снижению выработки АТФ и снижению баланса АТФ/АДФ. Снижение этого показателя в нервной системе приводит к нарушению формирования и передачи нервных импульсов, в.т.ч. управляющих скелетной мускулатурой. Такое нарушение в функционировании НС является одним из механизмов развития охранительного торможения.

Снижение скорости синтеза АТФ в клетках скелетных мышц и миокарда нарушает сократительную функцию миофибрилл, следствием чего становится снижение мощности выполняемой работы.

Для поддержания энергетических ресурсов при выполнении продолжительной работы (лыжные гонки, марафон и др. шоссейные велогонки) организуется питание на дистанции.

Обильное потоотделение во время длительных спортивных упражнений сопровождается значительной потерей хлоридов и изменением количественного соотношения ионов натрия, калия и кальция, хлора и фосфора в крови и тканях тела, что так же ведет к понижению работоспособности.

Утомление при длительной работе в условиях высокой температуры и высокой влажности окружающей среды может усиливаться в результате перегревания. Это нарушает деятельность центральной нервной системы и может привести к тепловому удару (головная боль, помутнение сознания, а также в тяжелых случаях потеря его).

Фактором, способствующим развитию утомления, является и охлаждение организма.

Молочная кислота в наибольших количествах в организме образуется при выполнении нагрузок субмаксимальной мощности, что существенно влияет на функционирование мышечных клеток.

В условиях повышенной кислотности снижается сократительная способность белков, участвующих в мышечной деятельности. Снижается активность белков-ферментов АТФ-азная активность миозина и активность кальциевой АТФ-азы (кальциевый насос). Изменяются свойства мембранных белков, что приводит к повышению проницаемости биологических мембран.

Лактат приводит к набуханию мышечных клеток, вследствие поступления в них воды что снижает сократительные возможности мышц.

Предполагается, что лактат связывает часть ионов Са и тем самым ухудшает управление процессами сокращения и расслабления мышц, что особенно сказывается на скоростных свойствах мышц.

Таблица 2. Подключение различных механизмов энергообеспечения в зависимости от продолжительности нагрузки максимальной мощности

Продолжительность нагрузки Механизмы энергообеспечения Источники энергии Примечания
1-5 с Анаэробный алактатный (фосфатный) АТФ
6-8 с Анаэробный алактатный (фосфатный) АТФ + КрФ
9-45 с Анаэробный алактатный (фосфатный) + анаэробный лактатный (лактатный) АТФ, КрФ + гликоген Большая выработка лактата
45-120 с Анаэробный лактатный (лактатный) Гликоген По мере увеличения продолжительности нагрузки выработка лактата снижается
120-240 с Аэробный (кислородный) + анаэробный лактатный (лактатный) Гликоген
240-600 с Аэробный Гликоген + жирные кислоты Чем больше доля участия жирных кислот в энергообеспечении нагрузки, тем больше ее продолжительность

Периферическое утомление может быть обусловлено не только метаболическими факторами, но и микроповреждениями мышечных волокон вследствие частых сильных сокращений.

Важно. Полагают, что такие микроповреждения приводят к послетренировочной миалгии — «крипатуре».

Эксцентрические мышечные сокращения приводят к более выраженным микроповреждениям чем концентрические или изометрические.

Определенный вклад в микроповреждении мышц при длительной эксцентрической нагрузке (например бег на длинные дистанции) могут вносить другие факторы:

  • истощение ресурсов,
  • изменения транспорта кальция,
  • и образование активных форм кислорода,
  • перекисным окислением липидов (ПОЛ).

Незначительная часть О2, поступающего в организм из воздуха, превращается в активные формы, называемые свободными радикалами. Свободные радикалы, обладая высокой химической активностью, вызывают окисление белков, липидов и нуклеиновых кислот.

Чаще всего окислению подвергается, липидный слой биологических мембран. Такое окисление называется перекисным окислением липидов (ПОЛ). Предполагают, что к повышению скорости свободно-радикального окисления приводит ацидоз и стрессорные гормоны. Чрезмерная активация ПОЛ негативно влияет на мышечную деятельность.

Так повышаемая проницаемость мембран нервных волокон и саркоплазматического ретикулума миоцитов затрудняет передачу двигательных нервных импульсов и снижает сократительные способности мышцы. Повреждение клеточных цистерн, содержащих ионы кальция, приводит к нарушению функции кальциевого насоса и ухудшения расслабляющих свойств мышц. При повреждении митохондральных мембран снижается эффективность тканевого дыхания.

источник